Source code for grakel.kernels.edge_histogram

"""The Edge Histogram kernel as defined in :cite:`sugiyama2015halting`."""
# Author: Ioannis Siglidis <y.siglidis@gmail.com>
# License: BSD 3 clause
from warnings import warn

from collections import Counter
from collections import Iterable

from sklearn.exceptions import NotFittedError
from sklearn.utils.validation import check_is_fitted

from grakel.kernels import Kernel
from grakel.graph import Graph

from numpy import array
from numpy import zeros
from numpy import squeeze
from numpy import einsum
from scipy.sparse import csr_matrix

# Python 2/3 cross-compatibility import
from six import iteritems
from six import itervalues


[docs]class EdgeHistogram(Kernel): """Edge Histogram kernel as found in :cite:`sugiyama2015halting`. Parameters ---------- sparse : bool, or 'auto', default='auto' Defines if the data will be stored in a sparse format. Sparse format is slower, but less memory consuming and in some cases the only solution. If 'auto', uses a sparse matrix when the number of zeros is more than the half of the matrix size. In all cases if the dense matrix doesn't fit system memory, I sparse approach will be tried. Attributes ---------- None. """
[docs] def __init__(self, n_jobs=None, normalize=False, verbose=False, sparse='auto'): """Initialize an edge kernel.""" super(EdgeHistogram, self).__init__(n_jobs=n_jobs, normalize=normalize, verbose=verbose) self.sparse = sparse self._initialized.update({'sparse': True})
[docs] def initialize(self): """Initialize all transformer arguments, needing initialization.""" if not self._initialized["n_jobs"]: if self.n_jobs is not None: warn('no implemented parallelization for EdgeHistogram') self._initialized["n_jobs"] = True if not self._initialized["sparse"]: if self.sparse not in ['auto', False, True]: TypeError('sparse could be False, True or auto') self._initialized["sparse"] = True
[docs] def parse_input(self, X): """Parse and check the given input for EH kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). Returns ------- out : np.array, shape=(len(X), n_labels) A np array for frequency (cols) histograms for all Graphs (rows). """ if not isinstance(X, Iterable): raise TypeError('input must be an iterable\n') else: rows, cols, data = list(), list(), list() if self._method_calling in [1, 2]: labels = dict() self._labels = labels elif self._method_calling == 3: labels = dict(self._labels) ni = 0 for (i, x) in enumerate(iter(X)): is_iter = isinstance(x, Iterable) if is_iter: x = list(x) if is_iter and len(x) in [0, 3]: if len(x) == 0: warn('Ignoring empty element on index: '+str(i)) continue else: # Our element is an iterable of at least 2 elements L = x[2] elif type(x) is Graph: # get labels in any existing format L = x.get_labels(purpose="any", label_type="edge") else: raise TypeError('each element of X must be either a ' + 'graph object or a list with at least ' + 'a graph like object and node labels ' + 'dict \n') # construct the data input for the numpy array for (label, frequency) in iteritems(Counter(itervalues(L))): # for the row that corresponds to that graph rows.append(ni) # and to the value that this label is indexed col_idx = labels.get(label, None) if col_idx is None: # if not indexed, add the new index (the next) col_idx = len(labels) labels[label] = col_idx # designate the certain column information cols.append(col_idx) # as well as the frequency value to data data.append(frequency) ni += 1 # Initialise the feature matrix if self._method_calling in [1, 2]: if self.sparse == 'auto': self.sparse_ = (len(cols)/float(ni * len(labels)) <= 0.5) else: self.sparse_ = bool(self.sparse) if self.sparse_: features = csr_matrix((data, (rows, cols)), shape=(ni, len(labels)), copy=False) else: # Initialise the feature matrix try: features = zeros(shape=(ni, len(labels))) features[rows, cols] = data except MemoryError: warn('memory-error: switching to sparse') self.sparse_, features = True, csr_matrix((data, (rows, cols)), shape=(ni, len(labels)), copy=False) if ni == 0: raise ValueError('parsed input is empty') return features
def _calculate_kernel_matrix(self, Y=None): """Calculate the kernel matrix given a target_graph and a kernel. Each a matrix is calculated between all elements of Y on the rows and all elements of X on the columns. Parameters ---------- Y : np.array, default=None The array between samples and features. Returns ------- K : numpy array, shape = [n_targets, n_inputs] The kernel matrix: a calculation between all pairs of graphs between targets and inputs. If Y is None targets and inputs are the taken from self.X. Otherwise Y corresponds to targets and self.X to inputs. """ if Y is None: K = self.X.dot(self.X.T) else: K = Y[:, :self.X.shape[1]].dot(self.X.T) if self.sparse_: return K.toarray() else: return K
[docs] def diagonal(self): """Calculate the kernel matrix diagonal of the fitted data. Parameters ---------- None. Returns ------- X_diag : np.array The diagonal of the kernel matrix, of the fitted. This consists of each element calculated with itself. """ # Check is fit had been called check_is_fitted(self, ['X', 'sparse_']) try: check_is_fitted(self, ['_X_diag']) except NotFittedError: # Calculate diagonal of X if self.sparse_: self._X_diag = squeeze(array(self.X.multiply(self.X).sum(axis=1))) else: self._X_diag = einsum('ij,ij->i', self.X, self.X) try: # If transform has happened return both diagonals check_is_fitted(self, ['_Y']) if self.sparse_: Y_diag = squeeze(array(self._Y.multiply(self._Y).sum(axis=1))) else: Y_diag = einsum('ij,ij->i', self._Y, self._Y) return self._X_diag, Y_diag except NotFittedError: # Else just return both X_diag return self._X_diag