Source code for grakel.kernels.neighborhood_subgraph_pairwise_distance

"""Neighborhood subgraph pairwise distance kernel :cite:`costa2010fast`."""
# Author: Ioannis Siglidis <y.siglidis@gmail.com>
# License: BSD 3 clause
import collections
import warnings

import numpy as np

from scipy.sparse import csr_matrix

from sklearn.exceptions import NotFittedError
from sklearn.utils.validation import check_is_fitted

from grakel.kernels import Kernel
from grakel.graph import Graph

from grakel.kernels._c_functions import APHash

# Python 2/3 cross-compatibility import
from six import iteritems
from six.moves import filterfalse
from builtins import range


[docs]class NeighborhoodSubgraphPairwiseDistance(Kernel): """The Neighborhood subgraph pairwise distance kernel. See :cite:`costa2010fast`. Parameters ---------- r : int, default=3 The maximum considered radius between vertices. d : int, default=4 Neighborhood depth. Attributes ---------- _ngx : int The number of graphs upon fit. _ngy : int The number of graphs upon transform. _fit_keys : dict A dictionary with keys from `0` to `_d+1`, constructed upon fit holding an enumeration of all the found (in the fit dataset) tuples of two hashes and a radius in this certain level. _X_level_norm_factor : dict A dictionary with keys from `0` to `_d+1`, that holds the self calculated kernel `[krg(X_i, X_i) for i=1:ngraphs_X]` for all levels. """ _graph_format = "dictionary"
[docs] def __init__(self, n_jobs=None, normalize=False, verbose=False, r=3, d=4): """Initialize an NSPD kernel.""" # setup valid parameters and initialise from parent super(NeighborhoodSubgraphPairwiseDistance, self).__init__( n_jobs=n_jobs, normalize=normalize, verbose=verbose) self.r = r self.d = d self._initialized.update({"r": False, "d": False})
[docs] def initialize(self): """Initialize all transformer arguments, needing initialization.""" if not self._initialized["n_jobs"]: if self.n_jobs is not None: warnings.warn('no implemented parallelization for NeighborhoodSubgraphPairwiseDistance') self._initialized["n_jobs"] = True if not self._initialized["r"]: if type(self.r) is not int or self.r < 0: raise ValueError('r must be a positive integer') self._initialized["r"] = True if not self._initialized["d"]: if type(self.d) is not int or self.d < 0: raise ValueError('d must be a positive integer') self._initialized["d"] = True
[docs] def parse_input(self, X): """Parse and create features for the NSPD kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- M : dict A dictionary with keys all the distances from 0 to self.d and values the the np.arrays with rows corresponding to the non-null input graphs and columns to the enumerations of tuples consisting of pairs of hash values and radius, from all the given graphs of the input (plus the fitted one's on transform). """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: # Hold the number of graphs ng = 0 # Holds all the data for combinations of r, d data = collections.defaultdict(dict) # Index all keys for combinations of r, d all_keys = collections.defaultdict(dict) for (idx, x) in enumerate(iter(X)): is_iter = False if isinstance(x, collections.Iterable): is_iter, x = True, list(x) if is_iter and len(x) in [0, 3]: if len(x) == 0: warnings.warn('Ignoring empty element' + ' on index: '+str(idx)) continue else: g = Graph(x[0], x[1], x[2]) g.change_format("adjacency") elif type(x) is Graph: g = Graph(x.get_adjacency_matrix(), x.get_labels(purpose="adjacency", label_type="vertex"), x.get_labels(purpose="adjacency", label_type="edge")) else: raise TypeError('each element of X must have either ' + 'a graph with labels for node and edge ' + 'or 3 elements consisting of a graph ' + 'type object, labels for vertices and ' + 'labels for edges.') # Bring to the desired format g.change_format(self._graph_format) # Take the vertices vertices = set(g.get_vertices(purpose=self._graph_format)) # Extract the dicitionary ed = g.get_edge_dictionary() # Convert edges to tuples edges = {(j, k) for j in ed.keys() for k in ed[j].keys()} # Extract labels for nodes Lv = g.get_labels(purpose=self._graph_format) # and for edges Le = g.get_labels(purpose=self._graph_format, label_type="edge") # Produce all the neighborhoods and the distance pairs # up to the desired radius and maximum distance N, D, D_pair = g.produce_neighborhoods(self.r, purpose="dictionary", with_distances=True, d=self.d) # Hash all the neighborhoods H = self._hash_neighborhoods(vertices, edges, Lv, Le, N, D_pair) if self._method_calling == 1: for d in filterfalse(lambda x: x not in D, range(self.d+1)): for (A, B) in D[d]: for r in range(self.r+1): key = (H[r, A], H[r, B]) keys = all_keys[r, d] idx = keys.get(key, None) if idx is None: idx = len(keys) keys[key] = idx data[r, d][ng, idx] = data[r, d].get((ng, idx), 0) + 1 elif self._method_calling == 3: for d in filterfalse(lambda x: x not in D, range(self.d+1)): for (A, B) in D[d]: # Based on the edges of the bidirected graph for r in range(self.r+1): keys = all_keys[r, d] fit_keys = self._fit_keys[r, d] key = (H[r, A], H[r, B]) idx = fit_keys.get(key, None) if idx is None: idx = keys.get(key, None) if idx is None: idx = len(keys) + len(fit_keys) keys[key] = idx data[r, d][ng, idx] = data[r, d].get((ng, idx), 0) + 1 ng += 1 if ng == 0: raise ValueError('parsed input is empty') if self._method_calling == 1: # A feature matrix for all levels M = dict() for (key, d) in filterfalse(lambda a: len(a[1]) == 0, iteritems(data)): indexes, data = zip(*iteritems(d)) rows, cols = zip(*indexes) M[key] = csr_matrix((data, (rows, cols)), shape=(ng, len(all_keys[key])), dtype=np.int64) self._fit_keys = all_keys self._ngx = ng elif self._method_calling == 3: # A feature matrix for all levels M = dict() for (key, d) in filterfalse(lambda a: len(a[1]) == 0, iteritems(data)): indexes, data = zip(*iteritems(d)) rows, cols = zip(*indexes) M[key] = csr_matrix((data, (rows, cols)), shape=(ng, len(all_keys[key]) + len(self._fit_keys[key])), dtype=np.int64) self._ngy = ng return M
[docs] def transform(self, X, y=None): """Calculate the kernel matrix, between given and fitted dataset. Parameters ---------- X : iterable Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). y : Object, default=None Ignored argument, added for the pipeline. Returns ------- K : numpy array, shape = [n_targets, n_input_graphs] corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features """ self._method_calling = 3 # Check is fit had been called check_is_fitted(self, ['X']) # Input validation and parsing if X is None: raise ValueError('transform input cannot be None') else: Y = self.parse_input(X) try: check_is_fitted(self, ['_X_level_norm_factor']) except NotFittedError: self._X_level_norm_factor = \ {key: np.array(M.power(2).sum(-1)) for (key, M) in iteritems(self.X)} N = self._X_level_norm_factor S = np.zeros(shape=(self._ngy, self._ngx)) for (key, Mp) in filterfalse(lambda x: x[0] not in self.X, iteritems(Y)): M = self.X[key] K = M.dot(Mp.T[:M.shape[1]]).toarray().T S += np.nan_to_num(K / np.sqrt(np.outer(np.array(Mp.power(2).sum(-1)), N[key]))) self._Y = Y self._is_transformed = True if self.normalize: S /= np.sqrt(np.outer(*self.diagonal())) return S
[docs] def fit_transform(self, X): """Fit and transform, on the same dataset. Parameters ---------- X : iterable Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). If None the kernel matrix is calculated upon fit data. The test samples. Returns ------- K : numpy array, shape = [n_input_graphs, n_input_graphs] corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features """ self._method_calling = 2 self.fit(X) S, N = np.zeros(shape=(self._ngx, self._ngx)), dict() for (key, M) in iteritems(self.X): K = M.dot(M.T).toarray() K_diag = K.diagonal() N[key] = K_diag S += np.nan_to_num(K / np.sqrt(np.outer(K_diag, K_diag))) self._X_level_norm_factor = N if self.normalize: return S / len(self.X) else: return S
[docs] def diagonal(self): """Calculate the kernel matrix diagonal of the fitted data. Static. Added for completeness. Parameters ---------- None. Returns ------- X_diag : int Always equal with r*d. Y_diag : int Always equal with r*d. """ # constant based on normalization of krd check_is_fitted(self, ['X']) try: check_is_fitted(self, ['_X_diag']) except NotFittedError: # Calculate diagonal of X self._X_diag = len(self.X) try: check_is_fitted(self, ['_Y']) return self._X_diag, len(self._Y) except NotFittedError: return self._X_diag
def _hash_neighborhoods(self, vertices, edges, Lv, Le, N, D_pair): """Hash all neighborhoods and all root nodes. Parameters ---------- vertices : set The graph vertices. edges : set The set of edges N : dict Neighborhoods that map levels (int) to dictionaries of root node symbols (keys) to list of vertex symbols, which correspond to the neighbors, that belong to this neighborhood. D_pairs : dict A dictionary that maps edges (tuple pairs of vertex symbols) to element distances (int - as produced from a BFS traversal). Returns ------- H : dict The hashed neighborhoods as a 2-level dict from radious, vertex to the hashed values. """ H, sel = dict(), sorted(list(edges)) for v in vertices: re, lv, le = sel, Lv, Le for radius in range(self.r, -1, -1): sub_vertices = sorted(N[radius][v]) re = {(i, j) for (i, j) in re if i in sub_vertices and j in sub_vertices} lv = {v: lv[v] for v in sub_vertices} le = {e: le[e] for e in edges} H[radius, v] = hash_graph(D_pair, sub_vertices, re, lv, le) return H
def hash_graph(D, vertices, edges, glv, gle): """Make labels for hashing according to the proposed method. Produces the graph hash needed for fast comparison. Parameters ---------- D_pairs : dict A dictionary that maps edges (tuple pairs of vertex symbols) to element distances (int - as produced from a BFS traversal). vertices : set A set of vertices. edges : set A set of edges. glv : dict Labels for vertices of the graph. gle : dict Labels for edges of the graph. Returns ------- hash : int. The hash value for the given graph. """ encoding = "" # Make labels for vertices Lv = dict() for i in vertices: label = "|".join(sorted([str(D[(i, j)]) + ',' + str(glv[j]) for j in vertices if (i, j) in D])) encoding += label + "." Lv[i] = label encoding = encoding[:-1]+":" # Expand to labels for edges for (i, j) in edges: encoding += Lv[i] + ',' + Lv[j] + ',' + str(gle[(i, j)]) + "_" # Arash Partov hashing, as in the original # implementation of NSPK. return APHash(encoding)