
“main” — 2025/7/1 — 0:46 — page 33 — #49

Chapter 3

The Learnable Typewriter: A
Generative Approach to Text Analysis

(a) The Learnable Typewriter idea (b) Cipher analysis (c) Paleography

Figure 3.1: The Learnable Typewriter. (a) Given a text line dataset, we learn to reconstruct
images by discovering the underlying characters. This generative approach can be used both
(b) to analyze complex ciphers [Knight et al., 2011] and (c) as an automatic tool for the study of
handwriting in historical documents [Camps et al., 2022].

3.1 Introduction

A popular approach to document analysis in the 1990s was to learn document-specific
character prototypes, which enabled Optical Character Recognition (OCR) [Kopec
and Lomelin, 1996, 1997; Xu and Nagy, 1999; Baird, 1999] but also other applications,
such as font classification [Hochberg et al., 1997] or document image compression
and rendering [Nolan and Filippini, 2010]. This idea culminated in 2013, with the
Ocular system [Berg-Kirkpatrick et al., 2013] which proposed a generative model for
printed text lines inspired by the printing process, and held the promise of achiev-
ing a complete explanation of their appearance. These document-specific generative

33

“main” — 2025/7/1 — 0:46 — page 34 — #50

34 CHAPTER 3. THE LEARNABLE TYPEWRITER

approaches were however overshadowed by discriminative approaches, whose sole
purpose is to perform predictions, and which lead to higher performance at the cost of
interpretability, e.g., [Graves and Schmidhuber, 2008; Li et al., 2023b]. In fact, [Simard
et al., 2002] showed that using transformations of input exemplars while performing
digit classification can allow learning with much fewer samples. Yet, acquiring such
exemplars remains costly and ambiguous for more complicated tasks. Inspired by
this, in this chapter, we explore how modern deep approaches enable revisiting and
extending analysis by synthesis approaches for text line analysis. In particular, we
demonstrate an approach that can deal with challenging examples of handwritten
documents, enabling a quantitative perspective in analyzing the character morphology
in historical handwriting as it is studied in the discipline of palaeography.

While discriminative approaches have been largely dominant in the current deep
learning-based computer vision, a recent set of works revisited generative approaches
for unsupervised multi-object object segmentation [Burgess et al., 2019; Emami et al.,
2021; Greff et al., 2017, 2019b; Yang et al., 2020; Crawford and Pineau, 2019; Deng et al.,
2020; Eslami et al., 2016; Jiang and Ahn, 2020; Smirnov et al., 2021; Monnier et al.,
2021]. Most of them provide results on synthetic data or simple real images [Monnier
et al., 2021], and sometimes demonstrate qualitative results on simple printed text
images [Smirnov et al., 2021; Reddy et al., 2022]. Surprisingly, images of handwritten
characters, which were notoriously used in the development of convolutional neural
networks [LeCun et al., 1989, 1998] and generative adversarial networks [Goodfellow
et al., 2014] were largely overlooked by these approaches.

We build on two recent sprite-based unsupervised image decomposition approaches
[Smirnov et al., 2021; Monnier et al., 2021] that provide an interpretable decomposition
of images into a vocabulary of small images, called sprites. These methods are trained
to jointly optimize both the sprites and the neural networks that predict their position
and color. Intuitively, we would like to adapt these methods so that from text lines that
are extracted from any given document, they could learn sprites that correspond to
each character. By adapting MarioNette [Smirnov et al., 2021] to perform text line anal-
ysis, we provide quantitative evaluation on real data and an analysis of the limitations
of state-of-the-art approaches for unsupervised multi-object segmentation. We argue
that text-line recognition should be used as a benchmark for this task in future work.

Because unsupervised performances are not completely satisfactory, we combine
this approach with a weak supervision from line-level transcriptions. Transcriptions
are widely available and easy to produce with dedicated software, e.g., [Kahle et al.,
2017; Kiessling et al., 2019], and we show that this dramatically improves results, while

“main” — 2025/7/1 — 0:46 — page 35 — #51

3.2. RELATED WORK 35

preserving their interpretability. Through this thesis we motivate the idea that similar
weak (i.e., image-level) annotations should also be considered for future problems of
image decomposition.

Contributions. To summarize, we present:
• a deep generative approach to text line analysis, inspired by deep unsupervised

multi-object segmentation methods, adapted to work in both an unsupervised
and a weakly supervised setting,

• a demonstration of the potential of our approach in challenging applications,
particularly in ciphered documents and in palaeographic analysis,

• experiments on four different types of datasets: the printed volume of Google1000
[Vincent, 2007; Gupta et al., 2018], the historical fonts of MFGR [Seuret et al.,
2023], the Copiale cipher [Baró et al., 2019; Knight et al., 2011], and two sets of
historical handwritten manuscripts between the 12th-15th century [Camps et al.,
2022] and Tab. F.1.

Our implementation can be found at github.com/ysig/learnable-typewriter.

3.2 Related Work

Text Analysis. Image Text Recognition, including Optical Character Recognition
(OCR) and Handwritten Text Recognition (HTR), is a classic pattern recognition
problem and one of the earliest successful applications of deep learning [LeCun et al.,
1989, 1998]. The mainstream approaches for text line recognition rely on discriminative
supervised learning. Typically, a Convolutional Neural Network (CNN) encoder will
map the input image to a sequence of features, and a decoder will associate them to
the ground truth, e.g., through a recurrent architecture trained with a Connectionist
Temporal Classification (CTC) loss [Graves et al., 2006; Graves and Schmidhuber,
2008; Puigcerver, 2017; Bluche and Messina, 2017; de Sousa Neto et al., 2020], or a
transformer trained with cross entropy [Kang et al., 2022; Li et al., 2023b].

More related to our work, ScrabbleGAN [Fogel et al., 2020] proposed a gener-
ative adversarial approach for semi-supervised text recognition, but their method
is neither able to reconstruct an input text line nor to decompose it into individual
characters. Also related are approaches that use already annotated sprites (referred
to as exemplars or supports) to perform OCR/HTR in common fonts [Zhang et al.,
2020], ciphers [Souibgui et al., 2020], and Cuneiform [Mikulinsky et al., 2025], by
matching them to text lines. Recent unsupervised approaches, either cluster input

github.com/ysig/learnable-typewriter

“main” — 2025/7/1 — 0:46 — page 36 — #52

36 CHAPTER 3. THE LEARNABLE TYPEWRITER

images embedded in a feature space [Baró et al., 2019] or rely on an existing text corpus
of the recognized language [Gupta et al., 2018].

Closest to our work are classical prototype-based methods [Kopec and Lomelin,
1996, 1997; Xu and Nagy, 1999; Baird, 1999] and in particular the Ocular system [Berg-
Kirkpatrick et al., 2013] which follows a generative probabilistic approach to jointly
model text and character fonts in binarized documents and is optimized through
Expectation Maximization (EM). Unlike us, it also relies on a pre-trained n-gram
language model, originally from the English language and later extended to multiple
languages [Garrette et al., 2015]. Other approaches rely on language models to identify
characters [Kopec et al., 2001; Berg-Kirkpatrick et al., 2013; Gupta et al., 2018]. However,
language models do not exist for unknown ciphers or historical manuscripts. Instead,
we propose to disambiguate sprites by relying on line-level transcriptions.

Most related to our application in palaeography, [Goyal et al., 2020] proposes
a probabilistic model for printed font analysis, [Srivatsan et al., 2021a] for linear
scribal hands of linear-b. However, both works rely on single isolated and binarized
characters as input, whereas the goal of our approach is to be directly applicable to
colored text lines. Closer to us [Aiolli et al., 1999; Ciula, 2005] uses the tangent distance
of [Simard et al., 2002] to learn prototypes from individual characters and cluster
them into dendrograms of classes. Unlike us, this approach operates on cropped and
segmented black and white characters.

Unsupervised multi-object segmentation. Unsupervised multi-object segmentation
refers to a family of approaches that decompose and segment scenes into multiple
objects in an unsupervised manner [Karazija et al., 2021]. Some techniques perform
decomposition by computing pixel-level segmentation masks over the whole input
image [Burgess et al., 2019; Emami et al., 2021; Greff et al., 2017, 2019b; Yang et al., 2020],
while others focus on smaller regions of the input and learn to compose objects in an
iterative fashion, mostly relying on a recurrent architecture [Crawford and Pineau,
2019; Deng et al., 2020; Eslami et al., 2016; Jiang and Ahn, 2020]. While all of these
techniques can isolate objects from their backgrounds by producing segmentation
masks, our goal is to summarize their recurring visual appearance.

We thus build on techniques that explicitly model the objects located inside the
input image, by associating them to a set of image prototypes referred to as sprites
through differentiable transformations [Monnier et al., 2021; Smirnov et al., 2021].
Sprites are color images with an additional transparency channel (RGBA), associated
to networks that predict their spatial transformation [Jaderberg et al., 2015b] in order

“main” — 2025/7/1 — 0:46 — page 37 — #53

3.3. THE LEARNABLE TYPEWRITER 37

to compose them onto a target canvas. DTI-Sprites [Monnier et al., 2021] provides good
reconstruction fidelity, but can only predict a small amount of sprites for a collection
of fixed-size images, and fails to scale when the number of objects within each image
increases to those of real documents. At the same time, MarioNette [Smirnov et al.,
2021] while being efficient, suffers from a high reconstruction error and fuzzy sprites
that suboptimally reconstruct a toy text dataset.

3.3 The Learnable Typewriter

Given a collection of text lines that have a consistent font or script, our goal is to
learn a representation of the average shape of all the characters it contains and a
deep network that predicts how to transform them in order to reconstruct any input
text line. Since complete supervision (i.e., the position and shape of every character
found in a document) for would be extremely costly to obtain for our purposes, we
propose to proceed in an analysis-by-synthesis fashion by building on sprite-based
unsupervised image decomposition approaches [Smirnov et al., 2021; Monnier et al.,
2021] which jointly learn a set of character images - called sprites - and a network that
transforms and positions them on a canvas in order to reconstruct input lines. Due to
the intrinsic ambiguity of decomposing a set of characters into sprites, we introduce a
complementary weak-supervision from line-level transcriptions.

In this section, we first present an overview of our image model and approach
(Sec. 3.3.1). Then, we describe the deep architecture we use (Sec. 3.3.2). Finally, we
discuss our loss and training procedure (Sec. 3.3.3).

Notations. We write a1:n the sequence {a1, . . . , an}, and use bold letters a for images.
An RGBA image a corresponds to an RGB image denoted by ac, alongside an alpha-
transparency channel denoted by aα. We use θ as a generic notation for network
parameters and thus any character indexed by θ, e.g., aθ, is a network.

3.3.1 Overview and image model

Fig. 3.2a presents an overview of our pipeline. An input image x of size H →W is fed to
an encoder network eθ generating a sequence of T features f1:T associated to uniformly-
spaced locations x1:T in the image. Each feature ft is processed independently by our
Typewriter module (Sec. 3.3.2) which outputs an RGBA image ot corresponding to
a character. The images o1:T are then composited with a canvas image we denote

“main” — 2025/7/1 — 0:46 — page 38 — #54

38 CHAPTER 3. THE LEARNABLE TYPEWRITER

(a) Overview of our full pipeline (b) Details of our Typewriter module

Figure 3.2: Overview. (a) An image is encoded into a sequence of features, each decoded by
the Typewriter module into image layers. They are then fused by alpha compositing with a
predicted low-res background. (b) The Typewriter module takes a feature as input, computes
sprites and associated probabilities from learned latent codes, and composes them into a
composite sprite that is then transformed and positioned onto an image-sized canvas.

oT+1. This canvas image oT+1 is a completely opaque image (zero transparency). Its
colors are predicted by a Multi-Layer Perceptron (MLP) bθ which takes as input the
features f1:T and outputs RGB values b1:T. All the resulting images o1:T+1 can be seen
as ordered image layers and are merged using alpha compositing, as proposed by
both [Monnier et al., 2021; Smirnov et al., 2021]. More formally, the reconstructed
image x̂ can be written as:

x̂ =
T+1

∑
t=1

[
∏
j<t

(1 ↑ oα
j)
]
oα

t oc
t . (3.1)

During training, the order of o1:T in the compositing operation is randomized to reduce
overfitting, as advocated by the MarioNette approach [Smirnov et al., 2021]. The full
system is differentiable and can be trained end-to-end.

3.3.2 Typewriter Module

We now describe in detail the Typewriter module, which takes as input a feature f
from the encoder and its position x, and outputs an image layer o, to be composited.
An overview of the module is presented in Fig. 3.2b. On a high level, it is similar
to the MarioNette architecture [Smirnov et al., 2021], but handles blanks (i.e., the
generation of a completely transparent image) differently and has a more flexible
deformation model, similar to the one used in DTI-Sprites [Monnier et al., 2021]. More
specifically, the module learns jointly RGBA images called sprites corresponding to
character images, and networks that use the features f to predict a probability for each
sprite and a transformation of the sprite. In the following, we detail how we obtain the

“main” — 2025/7/1 — 0:46 — page 39 — #55

3.3. THE LEARNABLE TYPEWRITER 39

following three elements: the set of K parameterized sprites, the sprites compositing,
and the transformation model.

Sprite Parametrization. We model characters as a set of K sprites which are defined
using a generator network. More specifically, we learn K latent codes z1:K which are
used as an input to a generator network gθ in order to generate sprites s1:K = gθ(z1:K).
These sprites are images with a single channel that corresponds to their opacity. Similar
to DTI-Sprites [Monnier et al., 2021], we model a variable number of sprites with an
empty (i.e., completely transparent) sprite which we write sK+1. Instead of directly
learning sprites in the pixel space as in DTI-Sprites [Monnier et al., 2021], we found
that using a generator network yields faster and better convergence.

Sprite Probabilities and Compositing. To predict a probability pk for each sprite sk,
each latent code zk is associated through a network pθ to a probability feature zp

k =

pθ(zk) of the same dimension D as the encoder features (D = 64 in our experiments).
We additionally optimize directly a probability feature zp

K+1 which we associate to the
empty sprite. Given a feature f predicted by the encoder, we predict the probability pk

of each sprite sk by computing the dot product between the probability features zp
1:K+1

and a learned projection of the feature εθ(f), and applying a softmax to the result:

p1:K+1(f) = softmax
(

ϱzp
1:K+1 ·εθ(f)T

)
, (3.2)

where · is the dot product applied to each element of the sequence, ϱ = 1/
↓

D is
a scalar temperature hyperparameter, and softmax is applied to the resulting vector.
We use these probabilities to combine the sprites into the weighted average s =

∑K
k=1 pkgθ(zk). During inference, we simply select the sprite gθ(zk) with the highest

probability pk instead of computing a weighted average. Note that this compositing
can be interpreted as attention operation [Vaswani et al., 2017]:

s = attention(Q̄, K̄, V̄) = softmax
(

Q̄K̄T
↓

D

)
V̄, (3.3)

with Q̄ = εθ(f), K̄ = pθ(z1:K+1), V̄ = gθ(z1:K+1), D the dimension of the features,
and by convention gθ(zK+1) is the empty sprite and pθ(zK+1) = zp

K+1. In fact, we show
that directly optimizing zp

1:K instead of learning to predict the probability features zp
1:K

from the sprite latent codes z1:K, as in MarioNette [Smirnov et al., 2021], yields similar
results. Note that we learn a probability code zp

K+1 to compute the probability of empty

“main” — 2025/7/1 — 0:46 — page 40 — #56

40 CHAPTER 3. THE LEARNABLE TYPEWRITER

sprites instead of having a separate mechanism as in MarioNette [Smirnov et al., 2021]
because it is critical for our supervised loss (see Sec. 3.3.3).

Positioning and Coloring. The final step of our module is to position the selected
sprite in a canvas of size H →W and to adapt its color. We implement this operation as
a sequence of a spatial transformer [Jaderberg et al., 2015a] and a color transformation,
similar to DTI-Sprites [Monnier et al., 2021]. More specifically, the feature f is given
as input to a network tθ that predicts three parameters for the color of the sprite and
three parameters for isotropic scaling and 2D-translation that are used by a spatial
transformer [Jaderberg et al., 2015a] to deform s. Finally, using the location x associated
with the feature f , we paste the deformed colored sprite onto a background canvas of
size H → W at position x to obtain a reconstructed RGBA image layer o. Positioning
the sprites with respect to the position of the associated local features helps us obtain
results co-variant to translations of the text lines and independent of the line size.
To produce the background canvas, each of the features f1:T is first passed through
a shared MLP bθ, to produce a vector of T background colors b1:T. We then use bi-
linear interpolation to upscale this vector to the full size of the input image x. Specific
details concerning the parametrization of the transformation networks can be found
in Appendix A (Sec. B.3).

3.3.3 Losses and training details

Our system is designed in an analysis-by-synthesis spirit and thus relies mainly on
a reconstruction loss. This reconstruction loss can be complemented by a loss on
the selected sprites in the supervised setting where each text line is paired with a
transcription. In the following, we define these losses for a single text line image and
its transcription, using the notations of the previous section.

Reconstruction loss. Our core loss is a simple mean square error between the input
image x and its reconstruction x̂ predicted by our system as discussed in Sec. 3.3.1:

Lrec(x, x̂) = ↔x ↑ x̂↔2. (3.4)

In the unsupervised setting, we don’t train with any additional regularization.

Weakly Supervised Loss. The intrinsic ambiguity of the sprite decomposition prob-
lem may result in sprites that do not correspond to individual characters.

“main” — 2025/7/1 — 0:46 — page 41 — #57

3.3. THE LEARNABLE TYPEWRITER 41

Using line-level annotation is an easy way to resolve this ambiguity. We find
that simply adding the classical CTC loss [Graves et al., 2006] computed on the
sprite probabilities to our reconstruction loss is enough to learn sprites that exactly
correspond to characters. More specifically, we chose the number of sprites as the
number of different characters and associate arbitrarily each sprite with a character and
the empty sprite with the blank token of the CTC. Then given the one-hot line-level
annotation y and ŷ = (p1:K+1(f1), ..., p1:K+1(fT)) the predicted sprite probabilities, we
optimize our system’s parameters by minimizing:

Lsup(x, y, x̂, ŷ) = Lrec(x, x̂) + ϱctcLctc(y, ŷ) (3.5)

where ϱctc is a hyperparameter and Lctc(y, ŷ) is the CTC loss computed between
the ground-truth y and the predicted probabilities ŷ. We use ϱctc = 0.01 in all our
experiments, increased only for the less challenging Google1000 to ϱctc = 0.1.

Implementation and training details. We train on the Google1000 [Vincent, 2007]
and Fontenay [Camps et al., 2022] datasets with lines of height H = 64 and on the
Copiale dataset [Knight et al., 2011] with H = 96. The generated sprites s1:K are of size
H/2 → H/2. In the supervised setting, we use as many sprites as there are characters,
and in the unsupervised, we set K = 60 for Google1000 and K = 120 for the Copiale
cipher. We train for 100 epochs on Google1000 and for 500 epochs on Copiale with a
batch size of 16, and we select the model that performs best on the validation set for
evaluation. In the unsupervised setting, we use line crops of width W = 2H and train
for 1000 epochs on Google1000 and for 5000 on the Copiale cipher with a batch size of
32 and use the final model. The number of epochs is much higher in the unsupervised
case than in the supervised case because the network sees only a small crop of each
line at each epoch, but each epoch is much faster to perform. To always avoid learning
sprites that reconstruct the background instead of the actual characters, we warm start
the training process by only training the background MLP for 3000 gradient steps.

Our encoder network is a ResNet-32-CIFAR10 [He et al., 2016], that is truncated
after layer 3 with a Gaussian feature pooling described in Appendix A (Sec. B.2).
For our unsupervised experiments, we use as generator gθ the U-Net architecture of
Deformable Sprites [Ye et al., 2022] as it converged quickly, and for our supervised
experiments a 2-layer MLP similar to MarioNette [Smirnov et al., 2021] which produces
sprites of higher quality. The networks εθ and pθ are single linear layers followed by
layer-normalization. We use the AdamW [Loshchilov and Hutter, 2019] optimizer with
a learning rate of 10↑4 and apply a weight-decay of 10↑6 to the encoder parameters.

“main” — 2025/7/1 — 0:46 — page 42 — #58

42 CHAPTER 3. THE LEARNABLE TYPEWRITER

(a) Semantic Segmentation (↗ sup. ↘ unsup.) (b) Sprites (sup.) (c) Sprites (unsup.)

Figure 3.3: Results on a printed document (Google1000). In both the supervised and unsu-
pervised setting our method produces meaningful sprites and accurate reconstructions (a).
We show the 60 most used sprites in alphabetic ordering in the supervised setting (b) and
ordered by frequency in the unsupervised one (c). See text for details and Appendix A for
more reconstructions (Sec. A).

3.4 Experiments

In this section, we evaluate the performance of our method on challenging datasets of
historical and modern fonts, as well as a handwritten cipher. We first introduce the
datasets and metrics used in our evaluation in Sec. 3.4.1. Then we present qualitative
results discussing the quality of the learned sprites with and without supervision in
Sec. 3.4.2. Finally, in Sec. 3.4.3, to assess the performance of our method and ablate our
architectural choices we present quantitative results both for reconstruction and for
transcription quality, for both the supervised and the unsupervised setting.

3.4.1 Datasets and metrics

Datasets. We experiment with four datasets with different characteristics: Google1000
[Vincent, 2007], MFGR [Seuret et al., 2023], the Copiale cipher [Knight et al., 2011] and
Fontenay manuscripts [Camps et al., 2022]:

• Google1000. The Google1000 dataset contains scanned historical printed books,
arranged into Volumes [Vincent, 2007]. We use the English Volume 0002 which we
process with the preprocessing code of [Gupta et al., 2018], using 317 out of 374 pages
and train-val-test set with 5097-567-630 lines respectively. This leads to a total number
of 83 distinct annotated characters. Although supervised printed font recognition is
largely considered a solved problem, and the annotation for this dataset is actually
the result of OCR, this document is still challenging for an analysis-by-synthesis
approach, containing artifacts such as ink bleed, age degradation, as well as variance
in illumination and geometric deformations due to digitization.
• MFGR. The ICDAR-2024 “Multi Font Group Recognition and OCR challenge”
dataset [Seuret et al., 2023], contains text lines that were printed with a set of 8 distinct

https://lme.tf.fau.de/competitions/icdar2024-competition-on-multi-font-group-recognition-and-ocr

“main” — 2025/7/1 — 0:46 — page 43 — #59

3.4. EXPERIMENTS 43

typefaces: antiqua, bastarda, fraktur, gotico-antiqua, italic, rotunda, schwabacher, textura.
We focus only on lines that contain fonts from a single group. This dataset is similar to
Google1000, but comes with the challenges of older prints, such as non-fully printed
letters and allographs. With 12K-45K training lines for each of the 8 different typefaces,
it serves as an ideal benchmark to assess the robustness of our model in learning
meaningful sprites across a variety of historical prints.
• Copiale cipher. The Copiale cipher is an oculist German text dating back to an 18th-
century secret society [Knight et al., 2011]. Opposite to Baro et al. [Baró et al., 2019]
which uses a binarized version of the dataset, we train our model on the original
text-line images, which we segmented using docExtractor [Monnier and Aubry, 2020]
and manually assigned to their annotations, respecting the train-val-test split of Baro et
al. [Baró et al., 2019] with 711-156-908 lines each. The total number of distinct annotated
characters is 112. This dataset is more challenging than printed text because of the
handwritten variance of a historical manuscript, and its large number of characters.

Metrics. Our goal is to capture the shape of all characters and position them precisely
on each text line. Such fine-grained annotation is however not available in existing
datasets. Instead, to provide a quantitative evaluation of our models, we report mean
squared reconstruction error (“Rec.” in our tables) and Character Error Rate (CER).
CER is the standard metric for Optical Character Recognition (OCR). Given ground-
truth and predicted sequences of characters, σ and σ̂, it is defined as the minimum
number of substitutions S, deletions D, and insertions I of characters needed to match
the predicted sequence σ̂ to the ground truth sequence σ, normalized by the size of
the ground truth sequence |σ|:

CER(σ, σ̂) =
S + D + I

|σ| . (3.6)

For simplicity, we ignore spaces. Predictions are obtained by selecting at every
position the character associated to the most likely sprite. In the supervised setting,
the association between sprites and characters is fixed at the beginning of training. In
the unsupervised setting, we associate every sprite to a single character using a simple
assignment strategy described in Appendix A (Sec. D).

3.4.2 Qualitative results

Examples of semantic segmentation and sprites in the supervised and unsupervised
setting on Google1000 and Copiale are shown in Figs. 3.3,3.4 respectively. In the

“main” — 2025/7/1 — 0:46 — page 44 — #60

44 CHAPTER 3. THE LEARNABLE TYPEWRITER

(a) ↗ sup. ↘ unsup. (b) Sprites (sup.) (c) Sprites (unsup.)

Figure 3.4: Results on the Copiale cipher [Knight et al., 2011]. Despite the high number of
characters and their variability, our method learns meaningful sprites and performs accurate
reconstructions in both settings (a). We show the 108 most used sprites sorted by frequency in
the supervised (b) and the unsupervised (c) settings.

unsupervised setting, several sprites (Figs. 3.3c,3.4c) can be used to reconstruct a single
character. For example in Google1000, the “n” and “m” sprites are joined to better
reconstruct “m”. To account for appearance variation, multiple sprites are learned
to reconstruct the most frequent character, e.g., “e” for Google and “c” in Copiale.
These effects are even stronger in the handwritten Copiale dataset, where generic
sub-character strokes are learned and used to better model characters’ variations.
In both datasets, some of the least used sprites do not correspond to characters, as
they are never selected by the network, and thus are not properly optimized. These
behaviors are expected in a completely unsupervised setting, because of the highly
unbalanced statistics of the character frequencies and the ambiguity of reconstruction:
without additional supervision, there is a clear benefit for the network to model well
the variations of common characters, and to approximate or discard rare ones. This
is a core limitation of existing unsupervised image decomposition approaches and
a motivation for the introduction of our weakly supervised setting. In the (weakly)
supervised setting, the sprites (Fig. 3.3b, 3.4b) closely correspond to the characters,
except for very rare characters like the capital letter ’Z’ for Google1000 (as can be
seen in Fig. A.1 of Appendix A), while reconstruction is of very high quality and each
character is reconstructed with the expected sprite.

Historical Font Reconstruction. In Fig. 3.5 we compare our learned sprites to man-
ually extracted and binarized exemplars, where we observe that the learned sprites
are mostly similar to the exemplars. Typefaces are sorted according to the average
similarity between all the learned sprites and the manually extracted exemplars (be-
tween a-z and A-Z) that is computed using SSIM, as is a standard practice for font
comparison [Srivatsan et al., 2021b]. SSIM is the highest for the antiqua font (0.745) and
the lowest for the gotico-antiqua font (0.676). This seems correlated to the number of
allographs that are present in each typeface. Antiqua is simple and standard, whereas

“main” — 2025/7/1 — 0:46 — page 45 — #61

3.4. EXPERIMENTS 45

(a) Antiqua (b) Fraktur (c) Italic (d) Schwabacher

(e) Bastarda (f) Textura (g) Rotunda (h) Gotico-Antiqua

Figure 3.5: Qualitative Evaluation on MFGR. We compare a-t, A-T between learned sprites
(ours), and manually extracted exemplars. Fonts are sorted by descending SSIM, computed on
post-processed sprites (see Sec. C of Appendix A for more details). Note, that although fonts
come from a single family, they may present allographs. For example, Italic contains different
variants of “Q”, where a random exemplar can significantly differ from the one summarized
using our method.

“main” — 2025/7/1 — 0:46 — page 46 — #62

46 CHAPTER 3. THE LEARNABLE TYPEWRITER

gotico-antiqua is a hybrid between two visually distinct fonts, hence as our model
learns a single sprite it fails to summarize them (e.g., see “T”, “G”, “I”, “E”, “F”). These
results showcase the versatility of our approach, which is crucial for it to be applied
for historical analysis.

3.4.3 Quantitative results

Our quantitative results and ablations for Google1000 and Copiale are reported in
Tabs. 3.1,3.2 respectively.

For Google1000, the CER in the supervised setting is less than 1%, while it is 7.7%
for the unsupervised setting. To provide baselines for these performances, we train
and evaluate on our version of the dataset (a) ScrabbleGAN [Fogel et al., 2020], a
supervised method with a standard recognizer and an additional generator module,
(b) FontAdaptor [Zhang et al., 2020], a recent 1-shot method that learns to match
single character exemplars to text lines, and c) an adaptation of the unsupervised
DTI-Sprites [Monnier et al., 2020] to text lines which we detail in Appendix A (see
Sec. E), where we also show that the vanilla MarioNette [Smirnov et al., 2021] has
significantly worse results. Our unsupervised approach performs clearly better than
our adaptation of DTI-Sprites and is almost on par with the 1-shot FontAdaptor, while
our weakly supervised approach is almost on par with ScrabbleGAN. Our adaptation
of DTI-Sprites is better at reconstructing images, but the learned sprites are much less
meaningful, as shown by the poor CER performance. Interestingly, reconstruction is
much better when using supervision, which hints that a better optimization scheme
could improve unsupervised performances. We also evaluate the effect of varying the
number of sprites K in the unsupervised setting. For K smaller than the actual number
of characters (83), namely K = 21 and K = 41, we have a significant performance drop
of 10% and 26% CER respectively, while increasing the number of characters to 166
and 332 doesn’t significantly boost performances.

On the Copiale dataset, we compare our results with HTRbyMatching [Souibgui
et al., 2020], a few-shot approach developed specifically for cipher recognition, using
the same train/val/test splits. HTRbyMatching was evaluated on a wide range of
few-shot scenarios, ranging from a scenario similar to FontAdaptor where a single
exemplar is available for every character, to one where 5 exemplars are available
for each character together with 5 completely annotated pages. Reported results are
only for confident character predictions with different confidence thresholds, but
summing the error rate of the predicted symbols and the percentage of non-annotated
symbols, one can estimate the CER to vary between 10% and 47% depending on the

“main” — 2025/7/1 — 0:46 — page 47 — #63

3.4. EXPERIMENTS 47

Method Type Rec. → 103 CER

DTI-Sprites [Monnier et al., 2021] unsup. 2.54 18.4 %
FontAdaptor [Zhang et al., 2020] 1-shot - 6.7 %
ScrabbleGAN [Fogel et al., 2020] sup. - 0.6 %

Learnable Typewriter sup. 3.5 ± 0.1 0.85 ± 0.03%
w\o shared zk sup. 3.3 ± 0.1 0.89 ± 0.06%
w\o pθ sup. 3.5 ± 0.1 0.99 ± 0.05%
w\o gθ sup. 3.4 ± 0.1 0.88 ± 0.04%

Learnable Typewriter unsup. 7.1 ± 0.4 7.7 ± 0.6%
w\o shared zk unsup. 7.4 ± 0.4 8.0 ± 0.2%
w\o pθ unsup. 7.0 ± 0.3 7.7 ± 2.0%
w\o gθ unsup. 10.5 ± 0.7 27.0 ± 2.2%

Table 3.1: Quantitative results and ablation on Google1000 [Vincent, 2007]. We report CER
and mean squared reconstruction error for all the different approaches. For our method, we
report the average of 5 runs and their standard deviation.

scenario1. This is consistent with the quantitative results we obtain with our approach,
which are much better in the supervised setting (4.2%) and worse in the completely
unsupervised one (52.6%). The low performance of the unsupervised approach is
consistent with the qualitative results: given that many characters are reconstructed
by sub-character sprites, one would have to associate sprite bi-grams to characters
in order to obtain good CER performances. Interestingly, the reconstruction error
is similar in the supervised and unsupervised setting, hinting that for this specific
dataset, optimizing the reconstruction quality might not be enough to obtain relevant
decomposition without additional priors. These results enable us to quantify and
analyze a limitation of unsupervised image decomposition approaches on a more
challenging dataset.

Note that the goal of our approach is not to boost CER performances - which in
any case would be futile for Google1000 where the ground truth is already the result
of an OCR model - but instead to learn character models and image decomposition.
All these comparisons should be thus considered as sanity checks. Yet, it is possible
to design post-processing algorithms to improve CER. We tested a simple algorithm
where we assign a new sprite to the most frequent bi-grams and tri-grams, which
leads to an improved CER for Copiale of 29.9%. However, we find this metric more

1Note, that the original paper calls SER our Character Error Rate which excludes spaces, correspond-
ing to Symbol Error Rate, and not Sentence Error Rate.

“main” — 2025/7/1 — 0:46 — page 48 — #64

48 CHAPTER 3. THE LEARNABLE TYPEWRITER

Method Type Rec. →102 CER

HTRbyMatching [Souibgui et al., 2020] few-shot - 10 ↑ 47%≃

Learnable Typewriter sup. 1.81 ± 0.01 4.2 ± 0.3%
w\o shared zk sup. 1.79 ± 0.01 4.0 ± 0.1%
w\o pθ sup. 1.77 ± 0.02 4.7 ± 0.1%
w\o gθ sup. 1.96 ± 0.07 4.2 ± 0.2%

Learnable Typewriter unsup. 1.93 ± 0.02 52.6 ± 1.7%
w\o shared zk unsup. 1.89 ± 0.02 47.6 ± 2.8%
w\o pθ unsup. 1.81 ± 0.06 51.9 ± 2.0%
w\o gθ unsup. 3.99 ± 0.14 80.6 ± 0.9%

Table 3.2: Quantitative results on Copiale [Knight et al., 2011]. We report CER and reconstruc-
tion error to evaluate both our selected baselines and our method. For our method, we report
it across an average over 5 runs alongside its standard deviation. ≃See text for details.

informative when applied to the raw output of unsupervised image decomposition
models.

In particular, we perform on both datasets an ablation of the architecture to better
understand which design choices are critical. Interestingly, our results show that both
in the supervised and the unsupervised setting, not sharing the latent codes zk between
the generation network and the sprite selection and even completely removing the
probability network pθ has limited influence on the performance clarifying that these
design choices of MarioNette [Smirnov et al., 2021] are not of critical importance.
Conversely, removing gθ and directly learning prototypes as network parameters
similar to DTI-Sprites [Monnier et al., 2021] has little impact in the supervised case, but
leads to a significant drop in performance in the unsupervised one. A more detailed
analysis of training curves reveals that in the unsupervised case, training is slower
and leads to overfitting. While it might be possible to fix this issue by adapting the
learning scheme for the prototypes, this shows that it is easier to learn the prototypes
through a generator network than to optimize them directly.

3.5 Application to palaeography

Understanding written character morphology, or script type is of central importance
to palaeography, which seeks is to employ handwriting as historical evidence. Script
types are for a handwritten manuscript what a font is for a printed one, yet as these
prototypes don’t exist outside the “scribe’s mind” [Parkes, 1969; Stokes, 2011] and

“main” — 2025/7/1 — 0:46 — page 49 — #65

3.5. APPLICATION TO PALAEOGRAPHY 49

(a) Sprites from document finetuning.

(b) Sprites and examples for “a” and “g”.

(c) Sprite and multiple examples for “e’.

(d) Learning dual sprites for “d” allographs.

Figure 3.6: Sprites learned for similar documents of a Praegothica script. Left: each line corre-
sponds to a different document. Looking at any column, one can notice the small differences
that characterize the handwriting in each document. Right: Colored boxed correspond to cases
analyzed in more detail. Sprites summarize the key attributes of a character in each specific
document, averaging its variations. Note the complexity of the documents: characters can
overlap or be connected ligature, the parchment is often stained, and there are important
intra-document character variations. *See text for more details.

are passed-by through a historical tradition, they come with a lot of written varia-
tion. Structuring this variation is crucial to adequately navigate such historical ev-
idence [Stutzmann, 2018], because the analysis of script types cannot be reduced
to a classification problem [Stutzmann, 2013, 2016; Hassner et al., 2015]. Moreover,
such natural language descriptions may often be ambiguous in their process of being
communicated across palaeographers and are often arbitrary as a means for com-
parison [Derolez, 2003]. In other words, as we discussed in Sec. 1.2, they are too
Aristotelian [Studtmann, 2024]. Instead of a system of classification, what is more in
need is a system for visual grounding [Ciula, 2017]. A simple solution, would be to
choose an exemplar from a specific document or to ask a palaeographer to manually
draw one that is “typical”. However, such processes are very time-consuming and
might reflect their priors or biases, and lack interpretability on how they aggregate the
existing variations of written morphology. Instead, we propose to continue previous
research approaches such as the System of Palaeographical Inspection [Aiolli et al., 1999;
Ciula, 2005], which tries to learn a hierarchy of “character prototypes”, similar to the
ones of Eleanor Rosch as discussed Sec. 1.2, starting from the segmented characters of
a document collection. Instead, in this Section we show how the Learnable Typewriter
can extract prototypes directly from input text lines in a way that makes them visually

“main” — 2025/7/1 — 0:46 — page 50 — #66

50 CHAPTER 3. THE LEARNABLE TYPEWRITER

comparable, enabling a more systematic and interpretable quantitative palaeographic
analysis.

Making Prototypes Comparable. Unlike Fig. 3.5 where prototypes are expected
to have distinct differences, in palaeography, we expect to compare prototypes with
subtle differences. Our goal is to analyze the written morphology across a granularity
that can range from an individual document to a complete document collection. In
order to properly compare their prototypes, our analysis would benefit from visual
alignment. To approach this, our methodology is to first learn a reference model using a
reference corpus and then finetune the model to reconstruct a subset of that corpus,
up to the granularity of a specific document, by finetuning only the parameters that
correspond to gθ(z). Since the positioning, scaling, and coloring of the prototypes are
shared, the prototypes will remain aligned, making them directly comparable. We
first demonstrate our analysis approach in a small challenging dataset of Manuscripts
from the Fontenay Abbey in Sec. 3.5.1, and then we move to a larger dataset of more
established typology of Textualis Formata in Sec. 3.5.2 with the goal of performing a
more systematic quantitative analysis.

3.5.1 Fontenay Manuscript

To first demonstrate the potential of our approach for palaeographic analysis, we
apply it to a collection of 14 historical charters from the Fontenay abbey [Camps
et al., 2022]. It contains digitized charters that originate from the Cistercian abbey
of Fontenay in Burgundy (France) [Camps et al., 2022] and were created during the
12th and early 13th centuries. While they were carefully written and preserved, these
documents are still very challenging (Fig. 3.6). Although they all use similar scripts
from the Praegothica type, they also exhibit clear variations. Each of these documents
has been digitized and each line has been manually segmented and transcribed. For
our experiments, we selected a subset of 14 different documents sharing a similar
script which falls into the family of praegothica scripts. These correspond to 163 lines,
that use 47 distinct characters. They exhibit degradation, clear intra-document letter
shape variations, and letters can overlap or be joined by ligature marks. Moreover,
each document represents only a small amount of data, e.g., the ones used in Fig. 3.6
contain between 8 and 25 lines.

Qualitative Results Fig. 3.6a visualizes the sprites obtained for five different docu-
ments for the characters “a” to “h” and Fig. 3.6 highlights different aspects of these

“main” — 2025/7/1 — 0:46 — page 51 — #67

3.5. APPLICATION TO PALAEOGRAPHY 51

results. Fig. 3.6b highlights the fact that the differences in the learned sprites corre-
spond to actual variations in the different documents, whether subtle, such as for the
“a” sprite, or clearer, such as for the descending part of the “g” sprite. Fig. 3.6c shows
how a sharp sprite can be learned for the character “e”, summarizing accurately its
shape despite small variations throughout its different occurrences. Finally, Fig. 3.6d
shows the case of a document in which two types of “d” co-exist. In this case, the
learned sprite, shown on the left, reassembles an average of the two, where both
versions of the ascending parts are visible on medium transparency. However, this
limitation could be overcome by learning several sprites per character. Using our
approach, we can learn two sprites per character, simply by summing their probabili-
ties when optimizing the CTC-loss. We find that when allographs exist, i.e., different
appearances of the same letter, these two different sprites do learn recover its two
distinct appearances. In our example, we show the two different learned “d” sprites
on the right of the original one.

3.5.2 Textualis Formata

Textualis formata is an established medieval gothic script which was continuously used
for over three centuries (13th-15th century). To analyze the results of our approach,
we adopt the taxonomy formalized by A. Derolez [Derolez, 2003], which provides a
framework based on morphological criteria. Derolez makes a distinction between two
subtypes of Northern and Southern Textualis (denoted as NT and ST) following their
geographical location. However both types are followed by multiple distinct subtypes,
that concern date, geographical origin, or language, which often intersect, questioning
its fundamental distinction. To provide an analysis of this script type we compile a
dataset of four train subfamilies and three test subfamilies for each class, providing a
total of 892 lines. Our dataset selection is detailed in Appendix A (Sec. F.1).2

Quantitative Paleography We start by training multiple models as in Sec. 3.5.1 in
order to obtain character prototypes at different levels of granularity: (a) a script type
model for Textualis, (b) script subtype models for Northern and Southern Textualis,
and (c) document level models for each document in our dataset. To quantitatively
compare prototypes between (b) and (c), we need to finetune from a common point of
reference, for which we set the model (a) that was trained on all Textualis. Aligned

2Note, that this section is a reduction of [Vlachou-Efstathiou et al., 2024] focusing on its methodology
which was my main contribution, as opposed to the palaeographic analysis which was the primary
expertise of the first author.

“main” — 2025/7/1 — 0:46 — page 52 — #68

52 CHAPTER 3. THE LEARNABLE TYPEWRITER

‹Ch.› Derolez’criteria NT|ST|diff.
σNT σST

‹a› NT: Closed form with variations like “box-‹a›”
ST: Open form or slightly closed with hairline 4.0 3.4

‹b› NT: Sloped or forked ascender tops
ST: (i) Flat ascender tops, (ii) round lobe 4.1 3.6

‹c› NT: Angular or broken lobe curves
ST: Semi-circular lobe 2.9 2.4

‹d› NT: (i) Lengthened and (ii) concave shaft
ST: (i) Shorter shaft and (ii) almost horizontal, (iii) round
bowl

3.8 3.1

‹e› NT: (i) Diagonal direction of the hairline and (ii) angular or
broken lobe curves
ST: (i) Horizontal or no hairline, (ii) semicircular lobe form

3.3 3.2

Figure 3.7: Derolez’ criteria for Northern and Southern Textualis and our subtype prototypes.

prototypes can now allow us to subtract them in pixel space and thus quantify their
difference in an interpretable way. To optimally and reliably compare prototypes, we
develop a post-processing procedure and quality evaluation which we describe in
Appendix A (Sec. F.2). To make this difference easier to understand, we use a color map
that represents zeros as white, and positive and negative values as two distinct colors,
typically red and blue. By revealing pixel-wise differences, this method facilitates an
initial qualitative examination of morphological disparities.

Consistency with classical Palaeography. In Fig. 3.7 we systematically check how
the extracted observations from prototype comparisons conforms to Derolez’s general
morphological criteria for both Northern and Southern Textualis prototypes, highlight-
ing their variations by visualizing their difference. While only ‹a›-‹e› are shown in
the table, more complete results can be found on our original publication [Vlachou-
Efstathiou et al., 2024]. In short, we find that Derolez’s observations closely align with
the variations that our prototypes enable us to visualize, which shows that our method
conforms to the classical palaeographic analysis. Additionally, we report the standard
deviation across prototypes for σNT and σST for each letter, which were consistently
higher for Northern Textualis, which is consistent with Derolez’s claim that this script
subtype generally exhibits higher intra-class variation.

Morphological EDA with Character Graphs. Having prototypes that characterize
different groups of instances from certain manuscripts allows us to perform intra-class

“main” — 2025/7/1 — 0:46 — page 53 — #69

3.5. APPLICATION TO PALAEOGRAPHY 53

(a) Graph interpretation (b) Character graph (c) Sprite Observations

Figure 3.8: Comparison graph pipeline. For a given document we can locate how far a
manuscript prototype is to the prototypes of two reference families by computing their L2-
distance (a). Mapping this way allows us to locate sub-groups of prototypes (b) which have
clear qualitative interpretation (c). *See text for more details.

analysis. To allow quantitative exploratory data analysis, we introduce a comparison
graph, illustrated in Fig. 3.8a. In this graph, each point represents a specific document
character prototype, with its coordinates defined as its distance in pixel space to two
selected prototypes computed by finetuning on the full manuscript that corresponds
to each typology. Blue and red, markers signify Northern, and Southern Textualis
documents, respectively. Each document’s identifier is written near its marker.

Analyzing the Character ‹a›. The letter ‹a› is often considered as a discriminative
criterion between script types, so much so that W. Oeser [Oeser, 1971] distinguished
seven categories within the Northern Textualis script subtype mainly based on allo-
graphs of ‹a›. The dispersion of the characters on the graph in Fig. 3.8b provides insight
into the variability of ‹a› in this subtype. The group associated to NT1-4 corresponds to
the closed “box-a” form in NT2 () and NT4 () and the double-bow variant in NT1
() and NT3 (). NT6 presents a more vertically elongated form which stands out ().
Most striking in our ‹a› character graph is that the prototypes for NT5 () and NT7
() are actually closer to the ST prototypes. This is consistent with the observation
that open ‹a› forms are standard for ST. While there are morphological variations
across ST documents, with round shapes (ST1 ; ST2 ; ST5 ; ST6), or with
more angular inner bows (ST3 ; ST4 ; ST7), the consistent use of an open form,
or only closed with a hairline, distinguishes them from the NT subtype, and all ST
documents prototypes are consistently closer to the ST prototype. Plotting this graph
across documents in Fig. 3.9 allows us to easily identify that NT5 stands out in the
graphs as an outlier document, as seven character prototypes are closer to ST than to

“main” — 2025/7/1 — 0:46 — page 54 — #70

54 CHAPTER 3. THE LEARNABLE TYPEWRITER

Figure 3.9: Document comparison graphs. Visualizing all letters for different documents
allows us to identify the document NT5 as an outlier of the Northern Textualis family.

NT prototypes, with a particular difference for ‹a,g,q› (). These observations can
be summarized in Fig. 3.8c.

3.6 Conclusion

We have presented a document-specific generative approach to document analysis.
Inspired by deep unsupervised multi-object segmentation methods, we designed an
end to end differentiable approach to accurately model text line images of manuscripts
through a set of learned sprites. We outlined that a completely unsupervised approach
suffers from the ambiguity of the decomposition problem and the imbalanced charac-
ter distributions. Therefore, we extended these approaches using weak supervision
to obtain robust, high-quality results. These allow us to learn prototypes for the char-
acters of both standard printed documents and of much more complex ones, such
as a handwritten ciphered manuscript or ancient charters. Finally, we demonstrated
the potential of our approach for a novel application: palaeographic analysis. We
extended our approach to a methodology for interpretable qualitative and quantitative
palaeography, that can integrate and complement traditional historical approaches.

“main” — 2025/7/1 — 0:46 — page 55 — #71

Chapter 4

Diffusion Models as Data Mining Tools

Figure 4.1: Mining typical visual elements with diffusion models. We demonstrate how to
use diffusion models to mine visual data through a simple pixel-based score and a standard
clustering approach. We present high-quality mining results for a diverse range of datasets
(from left to right: 10,130 photographs of cars tagged with a creation year between 1920-
1999 [Lee et al., 2013], 24,874 portraits from the 19th to the 21st century [Chen et al., 2023],
344,224 StreetView images tagged with country names [Luo et al., 2022], and 1,803,460 images
of scenes images associated with descriptive names [Zhou et al., 2017a]). Our results highlight
both expected elements and more unforeseen ones.

4.1 Introduction

As we discussed in Sec. 2.2.2 traditional image data mining aims to discover patterns
within large visual corpora such as collections of StreetView panoramas [Doersch

55

“main” — 2025/7/1 — 0:46 — page 56 — #72

56 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

et al., 2012; Lee et al., 2015b], historical images of faces [Ginosar et al., 2017; Chen et al.,
2023] or photographs of cars [Lee et al., 2013; Dalens et al., 2019]. This would often be
achieved through pairwise comparison of candidate patches in order to discover which
ones of them are both frequent and discriminative [Singh et al., 2012]. This chapter
proposes a novel idea: to turn generative models trained for image synthesis into a
scalable method for large scale mining of image datasets. Generative models digest
massive amounts of data, which they implicitly store in their weights. Our central
insight is that we can use this learned summary of the visual input to identify the most
typical image regions. This unconventional use of a diffusion model for studying its
training data demonstrates that generative models are potent tools beyond synthesis—
for data mining, summary, and understanding.

As we discussed in Sec. 1.3 our target task, mining for informative visual patterns,
is challenging. Unlike text, where words act as discrete tokens that we can directly
compare, the visual world seldom contains exactly repeating elements. Even common
simple visual elements, such as windows, can have different colors and different
numbers of panes; they may be seen from various viewpoints, and they may be
located at multiple positions as part of different facades. The standard approach to
image data mining [Doersch et al., 2012; Lee et al., 2013; Shen et al., 2021a] which
we discussed in Sec. 2.2.2, involves learning data-specific similarities with relevant
invariances (e.g., such that different-looking windows will be similar) and using them
to search for discriminative patterns. However, these techniques are not easily scalable
since one must apply them across all pairs of visual elements within all pairs of
images in the dataset. In other words, the similarity graph between visual elements
scales quadratically with the size of the dataset. In contrast, our proposed analysis-by-
synthesis approach does not require pairwise comparisons between different visual
elements and thus scales to very large datasets.

The approach we propose takes as input a dataset with image-level tags, such
as time [Lee et al., 2013; Chen et al., 2023], geography [Luo et al., 2022], or scene
labels [Zhou et al., 2017a]. Our goal is to provide a visual summary of the elements
typical of the different tags, such as the common elements that enable us to determine
the location of a StreetView panorama. To arrive at this summary, we first finetune a
conditional diffusion model on the target dataset. We then use the finetuned model
to define a pixel-wise typicality measure by assessing the degree to which the label
conditioning impacts the model’s reconstruction of an image. We mine visual elements
by aggregating typicality on patches, selecting the most typical ones, and clustering
them using features extracted from the finetuned model [Tang et al., 2023]. As visu-

“main” — 2025/7/1 — 0:46 — page 57 — #73

4.2. RELATED WORK 57

alized in Fig. 4.1, this leads to clusters of typical visual elements that summarize the
most characteristic patterns associated with the tags available in the input dataset.
For example, our face results highlight iconic elements, such as aviator glasses in the
1920s and military hats in the 1940s, and more subtle details, such as period-typical
glasses or make-up. Interestingly, our results on StreetView data highlight details that
are similar to the ones presented in geographical understanding websites [geodummy,
2023; geohints, 2023; Plonkit, 2023], popularized through the GeoGuessr game [ge-
oguessr, 2023], such as typical parts of utility poles, bollards, or architecture. To our
knowledge, no existing visual mining method has demonstrated such high-quality
results on diverse datasets.

Contributions. To summarize, we present:
• a typicality score that can be formally derived from a diffusion model, allowing

for an efficient extraction of the most typical visual elements of a dataset,
• a pipeline to extract and cluster typical elements in order to create typical sum-

maries of different datasets, including cars [Lee et al., 2013], portraits [Chen et al.,
2023], geographical data [Luo et al., 2022], and scenes [Zhou et al., 2017a],

• further applications of our method in locating elements which are typical across
location, visualizing the bias of a diffusion model, and localizing abnormalities
in chest X-ray images.

4.2 Related Work

Image data mining. Image data mining turned the manual and subjective process
of comparing photographs (e.g., [Kotchemidova, 2005]) into algorithmic methods for
summarizing image data, such as architectural details [Doersch et al., 2012; Lee et al.,
2015b], fashion [Ginosar et al., 2017; Matzen et al., 2017; Chen et al., 2023], industrial
design [Jae Lee et al., 2013], and art [Shen et al., 2019, 2021b; Kaoua et al., 2021] by
locating visual patterns. As we discussed in Sec. 2.2 this has mainly been achieved
using techniques such as discriminative clustering. For example, [Lee et al., 2013]
demonstrated how correspondence based mining across time can be achieved in a
dataset of objects of similar parts, namely cars, and [Doersch et al., 2012] showed that
geographically representative image elements can be automatically discovered from
Google StreetView imagery in a discriminative manner. However, these traditional
data mining approaches do not scale to large modern datasets. Indeed, they require
pairwise comparisons between all the visual elements of each image to the entire

“main” — 2025/7/1 — 0:46 — page 58 — #74

58 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

dataset in order to locate nearest neighbors and establish clusters. Notably, the discrim-
inative clustering algorithm of [Doersch et al., 2012] requires training a separate linear
SVM detector for each visual element- a computationally prohibitive approach when
considering multiple possible visual elements for the purposes of analysis. In contrast,
our approach is scalable to very large datasets. Closer to our work, generative models
have been trained to analyze the evolution of faces [Chen et al., 2023] and cars [Dalens
et al., 2019] across time, and the change in geography across GPS [Feng et al., 2025].
However, these works essentially focus on conditional image translation, and do not
try to mine typical elements in their datasets.

Diffusion models. Diffusion models have gained popularity in recent years due to
their stability in training and effectiveness in modeling complex multimodal distribu-
tions [Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal and Nichol, 2021; Ho et al.,
2022; Karras et al., 2022]. These models are capable of generating high-quality imagery
conditioned on input signals beyond categorical labels, like text [Rombach et al., 2022;
Saharia et al., 2022; Ramesh et al., 2022], and can further incorporate additional modal-
ities [Zhang et al., 2023; Li et al., 2023c]. In addition to generating images from scratch,
diffusion models have been used extensively for instruction-driven image-to-image
translation [Meng et al., 2022; Hertz et al., 2022; Mokady et al., 2023; Tumanyan et al.,
2023; Brooks et al., 2023]. It has also been shown that pre-trained text-to-image diffu-
sion models encode strong priors for natural scenes, allowing their internal features to
be used for secondary tasks [Xu et al., 2023; Luo et al., 2023; Tang et al., 2023]. They
can easily be adapted for new tasks or to new data distributions through minimal
finetuning [Brooks et al., 2023; Zhang et al., 2023; Ruiz et al., 2023].

Beyond mere image synthesis, generative image models, and in particular diffu-
sion models, have been studied as data augmentation engines. While most machine
learning approaches treat the data as fixed and improve the learning algorithm, works
such as [Jahanian et al., 2022; Chai et al., 2021; Azizi et al., 2023; Tian et al., 2023; Fan
et al., 2024] fix the learning algorithm and augment the training data, using generative
models to synthesize large amounts of synthetic training data.

In contrast, we present a new way to use generative models, with the goal of
gaining insights about their training data.

4.3 Data Mining via Diffusion Models

Given a collection of images with assigned labels, our goal is to extract a small subset of
visual elements from these images that best summarize the label inside the context of

“main” — 2025/7/1 — 0:46 — page 59 — #75

4.3. DATA MINING VIA DIFFUSION MODELS 59

the input dataset, or in other words that are highly typical of their label [Murphy, 2004].
The goal of our approach is to use generative probabilistic image synthesis models
towards that end. We rely on finetuning a conditional stable-diffusion model [Rombach
et al., 2022] trained for image synthesis, using it to extract a summary of the visual
world. We start by reviewing diffusion models and the techniques we leverage in
Sec. 4.3.1. In Sec. 4.3.2, we introduce our measure of typicality, which allows us to
measure how the class label conditioning affects the synthesis of an image by the
diffusion model. In Sec. 4.3.3, we describe how we aggregate typicality on patches to
mine typical visual elements and cluster them to summarize the training data.

4.3.1 Preliminary

Diffusion models. Diffusion models are generative models trained to transform
random noise ε ⇐ N (0, 1) ⇒ RH→W of height H and width W into a target prior
distribution of images p(x) ⇒ RH→W [Sohl-Dickstein et al., 2015; Ho et al., 2020]. They
achieve this by learning to revert a noising process called the forward process where
noise is linearly interpolated, with a decreasing mixing strength at ⇒ [0, 1] to the input
image x0 in different resolutions indexed by a fractional timestep index t ⇒ [0, 1]:

xε
t =

↓
atx +

√
1 ↑ atε. (4.1)

The diffusion model εθ(xε
t , t) ⇒ RH→W with parameters θ, is trained to predict the

input noise ε added to that timestep, by minimizing the reconstruction loss:

L(θ) = Eε,t,x⇐p(x)

[
↔εθ(xε

t , t)↑ ε↔2
]

, (4.2)

At test time, the target distribution can be sampled by gradually passing an input
noise through an iterative denoising process, known as the backward process [Ho et al.,
2020; Song et al., 2021], which is based on an inversion of eq. 4.1:

x̂0,t =
(

xε
t ↑

√
1 ↑ atεθ(xε

t , t)
)

/
↓

at, (4.3)

where x̂0,t is the denoised estimate at that timestep t. For this sampling procedure
where noise is iteratively added and removed from x̂0,t from coarse to fine resolutions,
various formulations have been proposed including DDPM [Ho et al., 2020] and

“main” — 2025/7/1 — 0:46 — page 60 — #76

60 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

its non-markovian counterpart DDIM [Song et al., 2021] whose goal is to factor out
stochasticity and speed up sampling.

Conditional Diffusion Models. In order to make diffusion models sample from a
conditional distribution p(x|c), [Nichol and Dhariwal, 2021] train εθ(z, t) on p(x), and
steer it during sampling towards c, using a trained classifier dθ(c|x), by simply adding
its gradient to εθ for a given class c according to x: εθ(xε

t , t) + ϱ⇑xdθ(c|x̂0,t), with a
strength ϱ. In a later work [Ho and Salimans, 2021] showed that this is equivalent with
training a diffusion model εθ(z, t, c) on p(x|c), with c:

L(θ) = Eε,t,(x,c)⇐p(x|c)

[
↔εθ(xε

t , t, c)↑ ε↔2
]

, (4.4)

while dropping it for a small percent of the time (10%) in order to learn an uncon-
ditional (or “null”) distribution p(x|⊋), and during sampling replacing ⇑xdθ(c|x̂0,t)

with εθ(xε
t , t, c)↑ εθ(xε

t , t, ⊋).

Latent diffusion models. Our work employs a variant of conditional diffusion models,
trained with classifier free guidance, known as a latent diffusion model (LDM) [Rom-
bach et al., 2022]. Instead of directly modeling the source data distribution x0 p(x|c),
LDMs model the distribution of x0 in the latent space of a variational autoencoder
vφ(x) [Kingma and Welling, 2014]. Working in the latent space reduces the complexity
of the data distribution. It thus significantly reduces both the number of parameters
of the diffusion model and the amount of training samples necessary to learn a good
model. As a conditioning they also use pretrained CLIP [Radford et al., 2021] text
features τφ(c), which are multimodal embeddings of text and images, trained on a
large dataset of image-text pairs.

L(θ) = Eε,t,(x,c)⇐p(vφ(x)|τφ(c))

[
↔εθ(xε

t , t, c)↑ ε↔2
]

, (4.5)

Diffusion Classifier. As conditional diffusion models are probabilistic models of the
form p(x|y) they could be inverted in order to be used as classifier p(y|x). Using the
fact that the ↑L(θ) is maximized as a lower bound of the log-likelihood, [Li et al.,
2023a] through a standard application of the Bayes rule defined a classifier pθ(ci|x) for
a set of labels ci and an image x as:

“main” — 2025/7/1 — 0:46 — page 61 — #77

4.3. DATA MINING VIA DIFFUSION MODELS 61

pθ (ci|x) =
1

∑j exp
{

Eε,t
[
Lt(x, ε, ci)↑ Lt(x, ε, cj)

]} , (4.6)

Lt(x, ε, c) ⇓ ↔εθ(xε
t , t, c)↑ ε↔2. (4.7)

4.3.2 Typicality

For the purpose of mining we would like to define a typicality measure, that can
enable us to sort visual elements coming from images of a specific class by how typical
they are of that class. To define that measure we require that it can be computed both
(a) efficiently, and (b) over different regions of the input image, so that we can discover
visual structure. Given that ⊋ is used to model the unconditional distribution, we can
simply sum the denominator of eq. 4.6 only across the classes c and ⊋ to:

pθ (c|x) =
1

1 + exp {Eε,t [Lt(x, ε, c)↑ Lt(x, ε, ⊋)]} . (4.8)

We can quickly observe that for the above expression to increase the denominator
needs to maximize. Thus, for the purposes of only rank elements one only needs to
compute the expression:

T(x|c) = Eε,t[Lt(x, ε, ⊋)↑ Lt(x, ε, c)], (4.9)

where T is our derived measure of typicality of an image x given the ground truth class
label conditioning c and the null conditioning ⊋. Intuitively, an image is typical of a
conditioning class label (e.g., a country’s name or a date) if the diffusion model is better
at denoising the input image in the presence of that label than in its absence. However,
note that instead of computing this measure across the whole image, one can compute
it for any subregion ε (down to the individual pixel), using a binary mask:

Tε(x|c) = Eε,t[Lε
t (x, ε, ⊋)↑ Lε

t (x, ε, c)], (4.10)

Lε
t (x, ε, c) ⇓ ↔ε · (εθ(xε

t , t, c)↑ ε)↔2. (4.11)

While when computed for the whole image typicality ranks the same as a binary
classifier, when computed per pixel it is equivalent to a measure known as pixel-wise
mutual information, as we discuss in Appendix B (Sec. A). However, being able to
compute typicality per patch is what enables us to discover visual elements.

“main” — 2025/7/1 — 0:46 — page 62 — #78

62 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

4.3.3 Mining for Typical Visual Elements

Patch-based analysis. To locate typical elements, we compute our typicality scores over
all the patches ε of an input image. This can be computed efficiently by computing
(εθ(xε

t , t, c) ↑ ε) and then using an average pooling operator with a fixed patch
size. To extract “mid-level” patches we use a patch size of 50 for images with a base
dimension of 256 and 64 for images with a base dimension of 512. Then, to identify
the set of most typical visual elements for a dataset we pick the 5 most typical non-
overlapping patches in each image according to the patch typicality, and select the
1000 most typical patches over all the dataset. Unlike [Li et al., 2023a], we find that
reducing the sampled range of t to [0.1, 0.7] improves the quality of our results, as the
tails can contribute uninformative yet typical samples (see Sec. C of the Appendix B).

Clustering visual elements. We cluster the most typical patches using k-means [Lloyd,
1982] with 32 clusters. To cluster elements, we embed them with DIFT [Tang et al.,
2023] features, computed at timestep t = 0.161 using our finetuned models. For
visualization, we rank clusters by the median typicality of their elements in decreasing
order and their elements by their distance to the centroid in increasing order.

Conditioning and finetuning. Given that our input dataset is labelled, we convert
its labels to sentences: “A car/portrait from the {decade}s.” for faces and cars (“A
car/portrait.” for the null conditioning ⊋), “A Google StreetView image of {country}.”
for StreetView data (“A Google StreetView image.” for the null conditioning ⊋), and
“An image of {scene}.” for images of the Places dataset [Zhou et al., 2017a] (empty string
for the null conditioning ⊋). A latent diffusion model [Rombach et al., 2022] is then
finetuned on the target dataset by optimizing the reconstruction loss (Equation 4.5)
given the conditioning. We use Stable Diffusion V1.5 [Rombach et al., 2022] as a base
model in all our experiments.

4.4 Experiments

We showcase the effectiveness of our approach in summarizing visual data in a
wide variety of datasets. First, in Sec. 4.4.1, we introduce the datasets used in our
experiments. Second, in Sec. 4.4.2, we evaluate the ranking produced by our typicality
measure. Third, in Sec. 4.4.3, we discuss our main result, the mined visual summaries
of the analyzed datasets, and compare it with [Doersch et al., 2012]. Finally, we discuss
the limitations of our approach in Sec. 4.4.4.

“main” — 2025/7/1 — 0:46 — page 63 — #79

4.4. EXPERIMENTS 63

1930s

T
Rand.

↑T
1990s

T
Rand.

↑T
(a) CarDB

1920s

1970s

(b) FTT

Thailand

Russia

(c) G^3

Soccer Field

Laundromat

(d) Places

Figure 4.2: Typical elements are informative of the conditioning label. We visualize the top-6
patches ranked according to typicality (T) with respect to the conditioning class label, negative
typicality (↑T), and randomly (Rand.). The two rows correspond to different classes from each
of the four datasets.

4.4.1 Datasets

We experiment with four diverse datasets. CarDB [Lee et al., 2013] and FTT [Chen
et al., 2023] have already been used for image data mining and include a few tens of
thousands of images. G^3 [Luo et al., 2022] and Places [Zhou et al., 2017a] are much
larger with 344K and 1.8M images respectively, and to our knowledge have never been
used for mining purposes.

Cars. The CarDB dataset [Lee et al., 2013] contains 10,130 photos of cars from 1920
to 1999, collected from cardatabase.net. They are labeled with creation years, which
we bin into decades for our analysis. This dataset contains cars seen from various
viewpoints and in diverse environments. As a result, extracting time-informative
elements is challenging. We rescale all images to a height of 256 pixels while preserving
their original aspect ratio.

Faces. The Faces Through Time (FTT) Dataset [Chen et al., 2023] contains 24,874 images
of notable people from the 19th to 21st century, with roughly 1,900 images per decade,
sourced from Wikimedia Commons. All photos come in 256x256 pixels.

Geo. The G^3 [Luo et al., 2022] dataset contains images obtained from crops of
StreetView panoramas, diversely sampled worldwide, of which we selected 344,224
images, which we rescaled to 512x756 pixels. This dataset is challenging because of
the small details that characterize a scene’s appearance and scale. We focus on the 8
countries with the largest number of panoramas (United States, Japan, France, Italy,
United Kingdom, Brazil, Russia, and Thailand) and select two countries with much

cardatabase.net

“main” — 2025/7/1 — 0:46 — page 64 — #80

64 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

(a) Typicallity (b) Clusters (c) Parallel Translation

Figure 4.3: Effect of finetuning. (a) For the same USA image (top), finetuning changes the
spatial allocation of typicality before (middle) and after (bottom) finetuning. (b) This results
in different typical clusters (USA), which, after finetuning (bottom), select for more typical
elements like mailboxes. (c) Translation (Sec. 4.5.1) of a picture of a road from France (top) to
Thailand without finetuning (middle) suffers from data biases in the base model turning the
road into a river and erasing utility poles. After finetuning on the G^3 dataset (bottom), the
translated image is more consistent with the original.

fewer images (Nigeria and India). We finetune the network using all images from
these countries, but we only mine a random subset of 1000 images for each country.

Places. The high-resolution version of the Places dataset [Zhou et al., 2017a] contains
1,803,460 million images from 365 place categories associated with their labels, with
a minimum dimension of 512 pixels. For mining, we only use the validation dataset,
which contains 100 images per scene category.

4.4.2 Typicality Measure Evaluation

Typicality score for patches. Fig. 4.2 shows the most and least typical patches accord-
ing to our typicality measure and random patches from the four datasets. We note
that the most typical patches are unique to each class and more discriminative than
random patches, while the least typical patches are uninformative of the label c.

Effect of finetuning. Unsurprisingly, we found that finetuning the diffusion model on
the dataset of interest was critical to the quality of our results. First, on a given image,
finetuning changes the spatial distribution of typicality, prioritizing elements more

“main” — 2025/7/1 — 0:46 — page 65 — #81

4.4. EXPERIMENTS 65

(a) 1920s (b) 1930s (c) 1980s

Figure 4.4: Clusters of CarDB [Lee et al., 2013] visual elements. Our visual summaries of
typical car elements show elements unique to a period and elements that evolve with time.
Evolving elements include the shapes of the car’s body or headlights, which are parts of the 6
most typical clusters for most periods. More specific elements include running boards in the
1920s ((a), 6th row) or large engine side grills in the 1930s ((b), 3rd, 4th and 6th row). In the
1980s (c), we observe two typical yet very discrete clusters of car design styles, of the curvy
French 2CV (1-4 row) juxtaposed to the square American chevy-style cars (5-6 rows).

correlated with the training labels (see Fig. 4.3a). Second, in Fig. 4.3b, we show the
most typical clusters identified before and after finetuning. The patches selected after
finetuning avoid the biases in the training data of the base model and are more specific
to the G ^3 dataset, identifying elements such as post-boxes. We also demonstrate
this quantitatively in Sec. 4.5.3 for our application to X-ray images. Third, finetuning
enables better translation between labels (see Sec. 4.5.1), as can be seen in Fig. 4.3c,
allowing vegetation, roads, road tracks, and utility poles to be translated consistently
across classes in the parallel dataset, which can be located in Appendix B (Sec. F).

4.4.3 Clusters of Typical Visual Elements

In this section, we analyze the visual summary of each dataset, obtained by clustering
the typical visual elements for the different class labels. We demonstrate the mined
summaries of Cars, Faces, Geo, and Scenes in Figs. 4.4, 4.5, 4.6, 4.7 respectively. For
all datasets we show for selected class labels, the top-6 clusters ranked by median
typicality of their elements. Inside each cluster elements are ranked by their distance
to the centroid. The resulting clusters are analyzed inside the figure captions for ease
of viewing. Complete clusters can be found in the Appendix B (Sec. F).

Comparison to [Doersch et al., 2012]. As the Matlab implementation of [Doersch
et al., 2012] is obsolete and hardware-specific, we reimplement their method in Python
and release this reimplementation with our code. In Fig. 4.8, we show the results of

“main” — 2025/7/1 — 0:46 — page 66 — #82

66 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

(a) 1920s (b) 1940s (c) 1950s

Figure 4.5: Clusters of FTT [Chen et al., 2023] visual elements. Our cluster analysis of faces
revealed that eyeglasses of varying designs are indicative of a portrait’s decade throughout the
history captured by FTT. Observing the 6 most typical clusters for the 1920s (a), the 1940s (b),
and the 1950s (c), we see how the shape of glasses is highly informative of each period. We also
located fashion items that uniquely trended only in a particular period, such as aviator goggles
in the 1920s (2nd row), military caps in the 1940s (1st and 2nd row), and baseball caps in the
1950s (1st row). Consistent with prior analysis [Ginosar et al., 2017], we also found clusters
corresponding to smiles and makeup.

this approach when applied directly to the same mining subset of the G^3 dataset
used by our approach. Similar to the original paper, we rank the trained detectors by
discriminativeness, i.e., the percentage of the top-50 final matches inside the positive
set [Doersch et al., 2012], and for each we show its top 6 matches. The results produced
with [Doersch et al., 2012] method demonstrate more textures, appear much less
semantic, and contain much more similar elements than ours. Note that the results in
the original [Doersch et al., 2012] paper do not show similar failures, and in particular
much less vegetation, simply because the paper used a curated and non-publicly
available dataset of images focused on selected cities extracted from Google StreetView.

4.4.4 Limitations

Although our method makes the first step towards utilizing generative models for
data mining, it comes with limitations. We visualize our two main failure modes in
Fig. 4.9. First, clustering elements using k-means can lead to mixed clusters containing
different categories of samples (Fig. 4.9a) or produce repetitively similar clusters.
Second, our method identified data artifacts (Fig. 4.9b) that are related to noisy printing
or scanning of old photographs or post-processing artifacts of StreetView images,
which are highly typical but irrelevant to our purpose. Interestingly, in the case of

“main” — 2025/7/1 — 0:46 — page 67 — #83

4.5. APPLICATIONS 67

(a) United States (b) Russia (c) Brazil

(d) France (e) Japan (f) Thailand

Figure 4.6: Clusters of G^3 [Luo et al., 2022] visual elements. Our geographic clusters show a
wide diversity of typical elements across different countries. We found architectural elements
such as roofs, facades, or windows among the most typical elements in all countries. For
example, (a) the “double hung” American windows (2nd row), (d) French roof windows
(1st-4th row), or (f) covered pathways in Thailand (4th row). Utility poles are ranked second in
Russia and Thailand and 5th in Brazil. We also found typical objects that are unique to a single
country, such as (a) American garbage cans and post boxes (3rd, 4th row), (c) protective guard
rails in Brazil (2nd row), (e) Japanese electricity warning signs and exterior wall tiles (1st, 2nd
row), and (f) Thai Bollards (1st row).

StreetView data similar artifacts are suggested in GeoGuessr [geoguessr, 2023] advice
websites [geodummy, 2023; geohints, 2023; Plonkit, 2023], as shortcuts for geolocation.

4.5 Applications

Our typicality score allows us to explore three different applications. First, in Sec. 4.5.1,
we translate geographical elements across locations and mine typical translations.
Then, in Sec. 4.5.2, we show how our method can be used as a qualitative way of un-
derstanding bias in the sampled distribution of a diffusion model. Finally, in Sec. 4.5.3,

“main” — 2025/7/1 — 0:46 — page 68 — #84

68 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

(a) Basketball court indoor (b) Chemistry lab (c) Construction site

(d) Beer garden (e) Veterinarians office (f) Stage outdoor

Figure 4.7: Clusters of Places365 [Zhou et al., 2017a] visual elements. Unlike the other datasets
we analyze, each class label correlates with objects of different categories in the scenes dataset,
as different scenes contain objects of different categories. Yet, our approach can still summarize
a large variety of complex scenes with their unique typical elements. For example, in basketball
courts (a), our approach locates the basket (1st row), the backboard (2nd row), the jersey
numbers (3rd row), the shot clock (4th row), a shoot (5th row), and the ball (6th row). Our
approach can still focus and summarize the most informative elements even in more cluttered
scenes like an outdoor stage, chemistry labs, or beer gardens. For example, in the case of
“outdoor stage” (f), we see a lot of infrastructural elements, including lights and top rails (1st
row), monitor speakers (2nd row), microphones (4th row), and side rails (5th row).

we show how disease localization emerges from typicality when training to generate
frontal chest X-rays of patients, of various diseases.

4.5.1 Analyzing Trends of Visual Elements

Having a diffusion model finetuned on a dataset of interest enables further applications
that were not possible with previous image mining approaches [Doersch et al., 2012;
Lee et al., 2013; Chen et al., 2023; Ginosar et al., 2017]. One new application is the
summary of variation of typical visual elements across different classes. As a case
study, we use the G^3 dataset to discover and summarize how co-typical elements,

“main” — 2025/7/1 — 0:46 — page 69 — #85

4.5. APPLICATIONS 69

(a) United States (b) Russia (c) Brazil

(d) France (e) Japan (f) Thailand

Figure 4.8: Doersch et al., 2013 [Doersch et al., 2012] results on G^3 [Luo et al., 2022]. See
text for details.

such as windows, roofs, or license plates, vary across locations. We start by using our
finetuned diffusion model to create a “parallel dataset”, by translating all the images
in our mining dataset to all location, and then define a measure of co-typicality.

Generating a parallel dataset. We first use Plug and Play [Tumanyan et al., 2023] to
translate input images from one location to another, which we denote by xc0⇔c, where
c0 is the initial country and c is the target country. We translate 1000 images for each
of the 10 selected countries to all others, resulting in 100K images, which we refer to
as our parallel dataset. Performing translation using our finetuned model is critical
for keeping scene elements consistent, as seen in Fig. 4.3c. In Appendix B (Sec. E) we
show how performing semantic segmentation for each image and its translations to
different countries enables measuring statistical trends. For example, we can measure
that translations to Thailand or Brazil add many potted plants, and translations to
Nigeria add dirt roads and people. This trends can be visually confirmed on our
parallel dataset (see Appendix B Sec. E)

“main” — 2025/7/1 — 0:46 — page 70 — #86

70 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

(a) Mixed Clusters (b) Mining Dataset Artifacts

Figure 4.9: Limitations. The two most common failure modes we observe are: (a) issues in
clustering, for example, clusters that contain diverse visual content, or multiple clusters that
correspond to the same concept; (b) typicality highlighting artifacts of the dataset. Discovering
artifacts is an expected behavior and can be useful for some applications.

Mining typical transformations across location. To further analyze our parallel
dataset, we define a cross-location typicality measure to mine a parallel translation of
patches across locations. We define the co-typicality T̄ as the median typicality across
location:

T̄(x) = med
c⇒C

[
T(xc0⇔c, c)

]
, (4.12)

where c0 is the true label of the patch x and the median is computed over all countries
in our set of 10 analyzed countries, denoted as C.

We can now ask: What visual elements are typical of a certain place and whose
translation remains typical of another location? Instead of ranking single patches, we
now rank a whole sequence of |C| patches translated across locations according to T̄.
We represent this sequence by concatenating the DIFT features of each patch [Tang
et al., 2023]. To facilitate clustering, we first project the DIFT features of each patch
from 1280 dimensions to 32 dimensions using UMAP [McInnes et al., 2018]. To keep
the same proportion of typical patches to the number of analyzed images/sequences
as in Sec. 4.4.3, we cluster the 10,000 visual elements with the highest co-typicality.

We display our results in Fig. 4.10, where for 6 selected clusters, we show in rows
the four translated sequences closest to the cluster mean, highlighting in red the
original image in each sequence. On the left column of Fig. 4.10, we show changes
in typical architectural elements, such as gables, roofs, and windows. In contrast, on
the right we show regulation-related elements, such as road tracks, utility poles, and
license plates. Our approach allows us to both locate and visualize how common visual
elements would vary from place to place, even though an exact match may not exist in
the original data. For example, roofs typically turn dark brown when translated to the
UK and black when translated to Japan.

“main” — 2025/7/1 — 0:46 — page 71 — #87

4.5. APPLICATIONS 71

Figure 4.10: Clustering typical translations of elements across countries. Ranking translated
visual elements according to T̄ and clustering the translated sequences results in groups of
elements with similar variations. We show elements from 6 selected clusters out of 32. The
source image for each sequence is highlighted in red. See text for details.

4.5.2 Mining Bias in Generation

Our goal in this section is to use mining as a way of interpreting the generative
performance of the diffusion model itself. There is a variety of metrics that concern
measuring the performance of generative models, including for example Inception
Score [Salimans et al., 2016], FID [Heusel et al., 2017], and Precision-Recall [Sajjadi et al.,
2018; Kynkäänniemi et al., 2019]. Especially for diffusion models different sampling
procedures can reveal different performance of aligning with the training data density
for the same model, as demonstrated for two-dimensions in Fig. 1 of [Karras et al.,
2025]. This indicates that while the diffusion model may already have knowledge of
the true density, sampling may bias it towards certain outputs. In Fig. 4.11 we show
how our typicality measure can be used to mine the sampling bias of a diffusion model.
We start by sampling synthetic images of an equal amount of 1000 images per class to
our real sampling dataset. While there is a clear difference between sampled and real
images of Thailand (Fig. 4.11a), it’s hard to ground it simply by comparing between

“main” — 2025/7/1 — 0:46 — page 72 — #88

72 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

(a) Real vs Synthetic (b) Thailand (c) United States

Figure 4.11: Mining Sampling Bias. (a) Example of real image from Thailand (top) and
synthetic (bottom). (b) Per row the corresponding visual summary for Thailand in the same
amount of real and synthetic data. (c) The same visual summary but for the United States.

real and synthetic images. Instead, we can compare the mined visual summaries that
are extracted using the same model that we used to generate synthetic data (Fig. 4.11b).
This can reveal that when sampling Thailand (with c.f.g. of 7.5) the model will place a
disproportionately higher amount of rice fields, while the same model is capable of
detecting more diverse objects such as bollards, architecture and road-tracks in our real
data. This procedure make the bias of the model highly interpretable. Note, that this
observation is not common amongst all classes, as can be seen for example in the case
of the US (Fig. 4.11c), where the typical visual summaries of real and synthetic images
are more similar. Yet, the mined summaries of the real data contain much more distinct
elements than the generated ones, which seems related to the diversity-fidelity trade-
off of classifier-free-guidance (see Fig. 5 of [Ho and Salimans, 2021]). Examples across
all of our ten countries, and different summaries for a range of c.f.g. ϱ values can be
found in Appendix B (Sec. D). Interestingly, this experiment adds another dimension
to the concept of Latent Reading which I introduced in [Siglidis, 2022], as the practice of
understanding cultural data by interacting with a model trained to reproduce them.

“main” — 2025/7/1 — 0:46 — page 73 — #89

4.5. APPLICATIONS 73

Mass Cardiomegaly Nodule Effusion Atelectasis Pneumonia Pneumothorax

gt.

pt.

ft.

2% ↗ 16.6% 6% ↗ 16.2% 0% ↗ 8.2% 3.3% ↗ 7.5% 1.3% ↗ 6.3% 4% ↗ 7.5% 3.% ↗ 6.5%

Figure 4.12: Localizing abnormal areas in medical images. We visualize typicality when
finetuning our model on the CXR8 dataset of thorax diseases [Wang et al., 2017]. After fine-
tuning (ft.), we can see a clear focus of the typicality score on expert annotated areas (red boxes)
for each disease, while initial predictions from the pretrained Stable Diffusion V1.5 model (pt.)
are mostly noise. Images are ordered by AUC-PR after finetuning [Arun et al., 2021]. With ↗
we delimitate performance before and after finetuning, in the last row.

On one hand, it shows how data is indeed summarized by generative models, which
facilitates their analysis. On the other, it shows that the sampling procedure adds bias
that doesn’t simply truncate non-frequent elements but changes their density. Instead,
our method could be used to apply generative models to real data, towards the same
goal.

4.5.3 Analysis of Medical Images

In Sec. 4.4.2, we discussed how typicality helps locate relevant patches for an input
label. In this section, we test this idea on completely different images: X-rays of patients
who may suffer from a combination of various thorax diseases. We finetune Stable Dif-
fusion on the ChestX-ray8 dataset [Wang et al., 2017] containing 108,948 frontal-view
X-ray images annotated with 14 single-word disease-name labels. Experts annotated
a test set of 879 images with 7 diseases with rectangular regions of interest (ROI) for
each disease. For each image, we compute typicality per latent pixel, interpolate the
resulting typicality to the input dimension, and blur the resulting typicality map for
visualization. In Fig. 4.12, we show the resulting typicality maps together with the
ROI annotation before and after finetuning. We can observe that finetuning clearly
improves the localization. To quantify this effect on average, we compute the area
under the precision recall-curve [Arun et al., 2021] (AUC-PR) of typicality associated

“main” — 2025/7/1 — 0:46 — page 74 — #90

74 CHAPTER 4. DIFFUSION MODELS AS DATA MINING TOOLS

with the annotated ROIs. To do this we binarize typicality across 1000 uniformly (i.e.,
log-linearly) spaced thresholds and for each count true (typical and inside the ROI)
and false (typical and outside the ROI) positives pixels. As reported in Fig. 4.12, we
see consistent improvement of this measure when finetuning the network (from 3.2%
to 9.6%), ranging from +3.5% for Pneumonothorax (from 3% to 6%) to +14.6% for
Mass (from 2% to 16.6%), which are respectively the least and most localized diseases.
Similar to Sec. 4.4.3, finetuning uses only image labels without localization supervision.

4.6 Conclusion

This chapter, presented a novel use of diffusion models as visual mining tools. It
defined a typicality measure using a pretrained stable diffusion model finetuned
for conditional image synthesis. This measure of typicality was used to mine visual
summaries of four datasets, tagged by year or location. We then showed that the same
typicality measure can be extended in discovering trends when translating visual
elements across location, making interpretable summaries of the sampling bias of
diffusion models, and even localizing abnormalities in medical data. In summary,
this chapter presented a novel approach to image data mining, enabling scaling to
datasets significantly more extensive and diverse than those showcased in prior works
as demonstrated by our experiments.

	Abstract
	Résumé
	Contents
	1 Introduction
	1.1 Philosophical Introduction
	1.2 Motivation
	1.3 Goal
	1.4 Challenges
	1.5 Contributions
	1.6 Thesis outline
	1.7 Publications

	2 Related Work
	2.1 Discovering Visual Structure
	2.1.1 Discovery via Recognition
	2.1.2 Discovery via Synthesis

	2.2 Mining Informative Visual Structure
	2.2.1 Discriminative Clustering
	2.2.2 Image Data Mining
	2.2.3 Model-centric Interpretations.

	2.3 Summarizing Informative Visual Structure
	2.3.1 Visual Summaries
	2.3.2 Text based summarization
	2.3.3 Exploratory Data Analysis

	3 The Learnable Typewriter: A Generative Approach to Text Analysis
	3.1 Introduction
	3.2 Related Work
	3.3 The Learnable Typewriter
	3.3.1 Overview and image model
	3.3.2 Typewriter Module
	3.3.3 Losses and training details

	3.4 Experiments
	3.4.1 Datasets and metrics
	3.4.2 Qualitative results
	3.4.3 Quantitative results

	3.5 Application to palaeography
	3.5.1 Fontenay Manuscript
	3.5.2 Textualis Formata

	3.6 Conclusion

	4 Diffusion Models as Data Mining Tools
	4.1 Introduction
	4.2 Related Work
	4.3 Data Mining via Diffusion Models
	4.3.1 Preliminary
	4.3.2 Typicality
	4.3.3 Mining for Typical Visual Elements

	4.4 Experiments
	4.4.1 Datasets
	4.4.2 Typicality Measure Evaluation
	4.4.3 Clusters of Typical Visual Elements
	4.4.4 Limitations

	4.5 Applications
	4.5.1 Analyzing Trends of Visual Elements
	4.5.2 Mining Bias in Generation
	4.5.3 Analysis of Medical Images

	4.6 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Work
	5.2.1 Cross-modal Mining.
	5.2.2 Matryoshka Mining.
	5.2.3 Data Mining Prior.

	5.3 Philosophical Epilogue

	Appendices
	A The Learnable Typewriter: A Generative Approach to Text Analysis
	A Additional results
	B Method details
	B.1 CTC loss calibration.
	B.2 Gaussian Pooling
	B.3 Sprite Positioning

	C Extracting and Comparing Exemplars on MFGR.
	D Unsupervised Evaluation
	D.1 Formalization.
	D.2 Algorithm overview.
	D.3 Matching Loss.

	E Baseline
	E.1 MarioNette.
	E.2 DTI-Sprites.

	F Palaeography: Textualis Formata
	F.1 Dataset Selection
	F.2 Post-processing (Quantitative Analysis)

	B Diffusion Models as Data Mining Tools
	A Typicality
	B Baselines
	B.1 CLIP
	B.2 Results

	C Time Range
	D Generative Experiment (c.f.g.)
	E Parallel Dataset
	F Full Clusters

	Bibliography

