grakel
.VertexHistogram¶
-
class
grakel.
VertexHistogram
(n_jobs=None, normalize=False, verbose=False, sparse='auto')[source][source]¶ Vertex Histogram kernel as found in [SB15].
- Parameters
- sparsebool, or ‘auto’, default=’auto’
Defines if the data will be stored in a sparse format. Sparse format is slower, but less memory consuming and in some cases the only solution. If ‘auto’, uses a sparse matrix when the number of zeros is more than the half of the matrix size. In all cases if the dense matrix doesn’t fit system memory, I sparse approach will be tried.
- Attributes
- None.
Methods
diagonal
(self)Calculate the kernel matrix diagonal of the fitted data.
fit
(self, X[, y])Fit a dataset, for a transformer.
fit_transform
(self, X)Fit and transform, on the same dataset.
get_params
(self[, deep])Get parameters for this estimator.
initialize
(self)Initialize all transformer arguments, needing initialisation.
pairwise_operation
(self, x, y)Calculate a pairwise kernel between two elements.
parse_input
(self, X)Parse and check the given input for VH kernel.
set_params
(self, \*\*params)Call the parent method.
transform
(self, X)Calculate the kernel matrix, between given and fitted dataset.
Initialise a vertex histogram kernel.
- Attributes
- X
Methods
diagonal
(self)Calculate the kernel matrix diagonal of the fitted data.
fit
(self, X[, y])Fit a dataset, for a transformer.
fit_transform
(self, X)Fit and transform, on the same dataset.
get_params
(self[, deep])Get parameters for this estimator.
initialize
(self)Initialize all transformer arguments, needing initialisation.
pairwise_operation
(self, x, y)Calculate a pairwise kernel between two elements.
parse_input
(self, X)Parse and check the given input for VH kernel.
set_params
(self, \*\*params)Call the parent method.
transform
(self, X)Calculate the kernel matrix, between given and fitted dataset.
-
__init__
(self, n_jobs=None, normalize=False, verbose=False, sparse='auto')[source][source]¶ Initialise a vertex histogram kernel.
-
diagonal
(self)[source][source]¶ Calculate the kernel matrix diagonal of the fitted data.
- Parameters
- None.
- Returns
- X_diagnp.array
The diagonal of the kernel matrix, of the fitted. This consists of each element calculated with itself.
-
fit
(self, X, y=None)[source]¶ Fit a dataset, for a transformer.
- Parameters
- Xiterable
Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). The train samples.
- yNone
There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
- selfobject
- Returns self.
-
fit_transform
(self, X)[source]¶ Fit and transform, on the same dataset.
- Parameters
- Xiterable
Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). If None the kernel matrix is calculated upon fit data. The test samples.
- yNone
There is no need of a target in a transformer, yet the pipeline API requires this parameter.
- Returns
- Knumpy array, shape = [n_targets, n_input_graphs]
corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
pairwise_operation
(self, x, y)[source]¶ Calculate a pairwise kernel between two elements.
- Parameters
- x, yObject
Objects as occur from parse_input.
- Returns
- kernelnumber
The kernel value.
-
parse_input
(self, X)[source][source]¶ Parse and check the given input for VH kernel.
- Parameters
- Xiterable
For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format).
- Returns
- outnp.array, shape=(len(X), n_labels)
A np.array for frequency (cols) histograms for all Graphs (rows).
-
transform
(self, X)[source]¶ Calculate the kernel matrix, between given and fitted dataset.
- Parameters
- Xiterable
Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). If None the kernel matrix is calculated upon fit data. The test samples.
- Returns
- Knumpy array, shape = [n_targets, n_input_graphs]
corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features