Source code for grakel.kernels.shortest_path

"""Shortest path kernel as defined in :cite:`borgwardt2005shortest`."""
# Author: Ioannis Siglidis <y.siglidis@gmail.com>
# License: BSD 3 clause
import collections
import warnings

import numpy as np

from sklearn.exceptions import NotFittedError
from sklearn.utils.validation import check_is_fitted

from grakel.graph import Graph
from grakel.kernels import Kernel


[docs]class ShortestPathAttr(Kernel): r"""The shortest path kernel for attributes. The Graph labels are considered as attributes. The computational efficiency is decreased to :math:`O(|V|^4)` See :cite:`borgwardt2005shortest`. Parameters ---------- algorithm_type : str, default={"dijkstra", "floyd_warshall", "auto"} Apply the dijkstra or floyd_warshall algorithm for calculating shortest path, or chose automatically ("auto") based on the current graph format ("auto"). metric : function, default=:math:`f(x,y)=\sum_{i}x_{i}*y_{i}`, The metric applied between attributes of the graph labels. The user must provide a metric based on the format of the provided labels (considered as attributes). Attributes ---------- X : list A list of tuples, consisting of shortest path matrices and their feature vectors. """
[docs] def __init__(self, n_jobs=None, normalize=False, verbose=False, algorithm_type="auto", metric=np.dot): """Initialise a `shortest_path_attr` kernel.""" super(ShortestPathAttr, self).__init__( n_jobs=n_jobs, normalize=normalize, verbose=verbose) self.algorithm_type = algorithm_type self.metric = metric self._initialized.update({"algorithm_type": False, "metric": False})
def initialize(self): """Initialize all transformer arguments, needing initialization.""" super(ShortestPathAttr, self).initialize() if not self._initialized["algorithm_type"]: if self.algorithm_type == "auto": self._graph_format = "auto" elif self.algorithm_type == "floyd_warshall": self._graph_format = "adjacency" elif self.algorithm_type == "dijkstra": self._graph_format = "dictionary" else: raise ValueError('Unsupported value ' + str(self.algorithm_type) + ' for "algorithm_type"') self._initialized["algorithm_type"] = True if not self._initialized["metric"]: if not callable(self.metric): raise TypeError('"metric" must be callable') self._initialized["metric"] = True def parse_input(self, X): """Parse and create features for the `shortest_path` kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- sp_attr_tup : list A list of tuples of shortest path matrices and tehir attributes. """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: sp_attr_tup = list() ni = 0 for (i, x) in enumerate(iter(X)): is_iter = isinstance(x, collections.Iterable) if is_iter: x = list(x) if is_iter and len(x) in [0, 2, 3]: if len(x) == 0: warnings.warn('Ignoring empty element' + ' on index: '+str(i)) continue else: S, L = Graph( x[0], x[1], {}, self._graph_format).build_shortest_path_matrix( self.algorithm_type) elif type(x) is Graph: S, L = x.build_shortest_path_matrix(self.algorithm_type) else: raise TypeError('each element of X must be either a ' + 'graph or an iterable with at least 2 ' + 'and at most 3 elements\n') sp_attr_tup.append((S, L)) ni += 1 if ni == 0: raise ValueError('parsed input is empty') return sp_attr_tup def pairwise_operation(self, x, y): """Calculate shortests paths on attributes. Parameters ---------- x, y : tuple Tuples of shortest path matrices and their attribute dictionaries. Returns ------- kernel : number The kernel value. """ # Initialise Sx, phi_x = x Sy, phi_y = y kernel = 0 dimx = Sx.shape[0] dimy = Sy.shape[0] for i in range(dimx): for j in range(dimx): if i == j: continue for k in range(dimy): for m in range(dimy): if k == m: continue if (Sx[i, j] == Sy[k, m] and Sx[i, j] != float('Inf')): kernel += self.metric(phi_x[i], phi_y[k]) *\ self.metric(phi_x[j], phi_y[m]) return kernel
[docs]class ShortestPath(Kernel): r"""The shortest path kernel class. See :cite:`borgwardt2005shortest`. Parameters ---------- algorithm_type : str, default={"dijkstra", "floyd_warshall", "auto"} Apply the dijkstra or floyd_warshall algorithm for calculating shortest path, or chose automatically ("auto") based on the current graph format ("auto"). with_labels : bool, default=True, case_of_existence=(as_attributes==True) Calculate shortest path using graph labels. Attributes ---------- X : dict A dictionary of pairs between each input graph and a bins where the sampled graphlets have fallen. _with_labels : bool Defines if the shortest path kernel considers also labels. _enum : dict A dictionary of graph bins holding pynauty objects _lt : str A label type needed for build shortest path function. _lhash : str A function for hashing labels, shortest paths. _nx : int Holds the number of sampled X graphs. _ny : int Holds the number of sampled Y graphs. _X_diag : np.array, shape=(_nx, 1) Holds the diagonal of X kernel matrix in a numpy array, if calculated (`fit_transform`). _phi_X : np.array, shape=(_nx, len(_graph_bins)) Holds the features of X in a numpy array, if calculated. (`fit_transform`). Complexity ---------- :math:`O(n*N*|\cup_{i}L_{i}|^{2})`, where :math:`n` the number of graph, :math:`N` the number of vertices of the **biggest** Graph and :math:`|\cup_{i}L_{i}|` the number of all distinct labels. """ _graph_bins = dict()
[docs] def __init__(self, n_jobs=None, normalize=False, verbose=False, with_labels=True, algorithm_type="auto"): """Initialize a `shortest_path` kernel.""" super(ShortestPath, self).__init__( n_jobs=n_jobs, normalize=normalize, verbose=verbose) self.with_labels = with_labels self.algorithm_type = algorithm_type self._initialized.update({"with_labels": False, "algorithm_type": False})
def initialize(self): """Initialize all transformer arguments, needing initialization.""" if not self._initialized["n_jobs"]: if self.n_jobs is not None: warnings.warn('no implemented parallelization for ShortestPath') self._initialized["n_jobs"] = True if not self._initialized["algorithm_type"]: if self.algorithm_type == "auto": self._graph_format = "auto" elif self.algorithm_type == "floyd_warshall": self._graph_format = "adjacency" elif self.algorithm_type == "dijkstra": self._graph_format = "dictionary" else: raise ValueError('Unsupported "algorithm_type"') if not self._initialized["with_labels"]: if self.with_labels: self._lt = "vertex" self._lhash = lhash_labels self._decompose_input = decompose_input_labels else: self._lt = "none" self._lhash = lhash self._decompose_input = decompose_input def transform(self, X): """Calculate the kernel matrix, between given and fitted dataset. Parameters ---------- X : iterable Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). If None the kernel matrix is calculated upon fit data. The test samples. Returns ------- K : numpy array, shape = [n_targets, n_input_graphs] corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features """ self._method_calling = 3 # Check is fit had been called check_is_fitted(self, ['X', '_nx', '_enum']) # Input validation and parsing if X is None: raise ValueError('transform input cannot be None') else: Y = self.parse_input(X) # Transform - calculate kernel matrix try: check_is_fitted(self, ['_phi_X']) phi_x = self._phi_X except NotFittedError: phi_x = np.zeros(shape=(self._nx, len(self._enum))) for i in self.X.keys(): for j in self.X[i].keys(): phi_x[i, j] = self.X[i][j] self._phi_X = phi_x phi_y = np.zeros(shape=(self._ny, len(self._enum) + len(self._Y_enum))) for i in Y.keys(): for j in Y[i].keys(): phi_y[i, j] = Y[i][j] # store _phi_Y for independent (of normalization arg diagonal-calls) self._phi_Y = phi_y km = np.dot(phi_y[:, :len(self._enum)], phi_x.T) self._is_transformed = True if self.normalize: X_diag, Y_diag = self.diagonal() return km / np.sqrt(np.outer(Y_diag, X_diag)) else: return km def diagonal(self): """Calculate the kernel matrix diagonal for fitted data. A funtion called on transform on a seperate dataset to apply normalization on the exterior. Parameters ---------- None. Returns ------- X_diag : np.array The diagonal of the kernel matrix, of the fitted data. This consists of kernel calculation for each element with itself. Y_diag : np.array The diagonal of the kernel matrix, of the transformed data. This consists of kernel calculation for each element with itself. """ # Check is fit and transform had been called try: check_is_fitted(self, ['_phi_X']) except NotFittedError: check_is_fitted(self, ['X']) # calculate feature matrices. phi_x = np.zeros(shape=(self._nx, len(self._enum))) for i in self.X.keys(): for j in self.X[i].keys(): phi_x[i, j] = self.X[i][j] # Transform - calculate kernel matrix self._phi_X = phi_x try: check_is_fitted(self, ['X_diag']) except NotFittedError: # Calculate diagonal of X self._X_diag = np.sum(np.square(self._phi_X), axis=1) self._X_diag = np.reshape(self._X_diag, (self._X_diag.shape[0], 1)) try: check_is_fitted(self, ['_phi_Y']) # Calculate diagonal of Y Y_diag = np.sum(np.square(self._phi_Y), axis=1) return self._X_diag, Y_diag except NotFittedError: return self._X_diag def fit_transform(self, X, y=None): """Fit and transform, on the same dataset. Parameters ---------- X : iterable Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). y : Object, default=None Ignored argument, added for the pipeline. Returns ------- K : numpy array, shape = [n_targets, n_input_graphs] corresponding to the kernel matrix, a calculation between all pairs of graphs between target an features """ self._method_calling = 2 self.fit(X) # calculate feature matrices. phi_x = np.zeros(shape=(self._nx, len(self._enum))) for i in self.X.keys(): for j in self.X[i].keys(): phi_x[i, j] = self.X[i][j] # Transform - calculate kernel matrix self._phi_X = phi_x km = np.dot(phi_x, phi_x.T) self._X_diag = np.diagonal(km) if self.normalize: return np.divide(km, np.sqrt(np.outer(self._X_diag, self._X_diag))) else: return km def parse_input(self, X): """Parse and create features for "shortest path" kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- sp_counts : dict A dictionary that for each vertex holds the counts of shortest path tuples. """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') # Not a dictionary else: i = -1 sp_counts = dict() if self._method_calling == 1: self._enum = dict() elif self._method_calling == 3: self._Y_enum = dict() for (idx, x) in enumerate(iter(X)): is_iter = isinstance(x, collections.Iterable) if is_iter: x = list(x) if is_iter and (len(x) == 0 or (len(x) == 1 and not self.with_labels) or len(x) in [2, 3]): if len(x) == 0: warnings.warn('Ignoring empty element on index: ' + str(idx)) continue elif len(x) == 1: spm_data = Graph(x[0], {}, {}, self._graph_format ).build_shortest_path_matrix(self.algorithm_type, labels=self._lt) else: spm_data = Graph(x[0], x[1], {}, self._graph_format ).build_shortest_path_matrix(self.algorithm_type, labels=self._lt) elif type(x) is Graph: spm_data = x.build_shortest_path_matrix(self.algorithm_type, labels=self._lt) else: raise TypeError('each element of X must have at least' + ' one and at most 3 elements\n') i += 1 S, L = self._decompose_input(spm_data) sp_counts[i] = dict() for u in range(S.shape[0]): for v in range(S.shape[1]): if u == v or S[u, v] == float("Inf"): continue label = self._lhash(S, u, v, *L) if label not in self._enum: if self._method_calling == 1: idx = len(self._enum) self._enum[label] = idx elif self._method_calling == 3: if label not in self._Y_enum: idx = len(self._enum) + len(self._Y_enum) self._Y_enum[label] = idx else: idx = self._Y_enum[label] else: idx = self._enum[label] if idx in sp_counts[i]: sp_counts[i][idx] += 1 else: sp_counts[i][idx] = 1 if i == -1: raise ValueError('parsed input is empty') if self._method_calling == 1: self._nx = i+1 elif self._method_calling == 3: self._ny = i+1 return sp_counts
def lhash(S, u, v, *args): return S[u, v] def decompose_input(a): return (a, []) def lhash_labels(S, u, v, *args): return (args[0][u], args[0][v], S[u, v]) def decompose_input_labels(args): return (args[0], args[1:])