grakel.ShortestPath

class grakel.ShortestPath(n_jobs=None, normalize=False, verbose=False, with_labels=True, algorithm_type='auto')[source][source]

The shortest path kernel class.

See [BK05].

Parameters
algorithm_typestr, default={“dijkstra”, “floyd_warshall”, “auto”}

Apply the dijkstra or floyd_warshall algorithm for calculating shortest path, or chose automatically (“auto”) based on the current graph format (“auto”).

with_labelsbool, default=True, case_of_existence=(as_attributes==True)

Calculate shortest path using graph labels.

Attributes
Xdict

A dictionary of pairs between each input graph and a bins where the sampled graphlets have fallen.

_with_labelsbool

Defines if the shortest path kernel considers also labels.

_enumdict

A dictionary of graph bins holding pynauty objects

_ltstr

A label type needed for build shortest path function.

_lhashstr

A function for hashing labels, shortest paths.

_nxint

Holds the number of sampled X graphs.

_nyint

Holds the number of sampled Y graphs.

_X_diagnp.array, shape=(_nx, 1)

Holds the diagonal of X kernel matrix in a numpy array, if calculated (fit_transform).

_phi_Xnp.array, shape=(_nx, len(_graph_bins))

Holds the features of X in a numpy array, if calculated. (fit_transform).

Methods

diagonal()

Calculate the kernel matrix diagonal for fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X[, y])

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse and create features for “shortest path” kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

Initialize a shortest_path kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal for fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X[, y])

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse and create features for “shortest path” kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, normalize=False, verbose=False, with_labels=True, algorithm_type='auto')[source][source]

Initialize a shortest_path kernel.

Bibliography

BK05

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings of the 5th International Conference on Data Mining, 74–81. 2005.