grakel.SvmTheta

class grakel.SvmTheta(n_jobs=None, normalize=False, verbose=False, random_state=None, n_samples=50, subsets_size_range=(2, 8), metric=<function _inner>)[source][source]

Calculate the SVM theta kernel.

See [JJDB14].

Parameters
X,Yvalid-graph-format

The pair of graphs on which the kernel is applied.

n_samplesint, default=50

Number of samples.

subsets_size_rangetuple, len=2, default=(2,8)

(min, max) size of the vertex set of sampled subgraphs.

metricfunction (number, number -> number), default=:math:f(x,y)=x*y

The applied metric between the svm_theta numbers of the two graphs.

random_stateRandomState or int, default=None

A random number generator instance or an int to initialize a RandomState as a seed.

Attributes
random_state_RandomState

A RandomState object handling all randomness of the class.

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Lovasz theta kernel as proposed in [JJDB14].

parse_input(X)

Parse and create features for svm_theta kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

Initialise a lovasz_theta kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Lovasz theta kernel as proposed in [JJDB14].

parse_input(X)

Parse and create features for svm_theta kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, normalize=False, verbose=False, random_state=None, n_samples=50, subsets_size_range=(2, 8), metric=<function _inner>)[source][source]

Initialise a lovasz_theta kernel.

Bibliography

JJDB14(1,2,3)

Fredrik Johansson, Vinay Jethava, Devdatt Dubhashi, and Chiranjib Bhattacharyya. Global graph kernels using geometric embeddings. In Proceedings of the 31st International Conference on Machine Learning, 694–702. 2014.