grakel.GraphHopper

class grakel.GraphHopper(n_jobs=None, normalize=False, verbose=False, kernel_type='linear')[source][source]

Graph Hopper Histogram kernel as found in [FKP+13].

Parameters
kernel_typestr, tuple or function
For kernel_type of type:
  • str can either be ‘linear’, ‘gaussian’, ‘bridge’.

  • tuple can be of the form (‘gaussian’, mu) where mu is a number.

  • function can be a function that takes two tuples of np.arrays for each graph corresponding to the M matrix and the attribute matrix and returns a number.

Attributes
metric_function

The base metric applied between features.

calculate_norm_bool

Defines if the norm of the attributes will be calculated (in order to avoid recalculation when using it with e.g. gaussian).

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Graph Hopper kernel as proposed in [FKP+13].

parse_input(X)

Parse and check the given input for the Graph Hopper kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

Initialize an Graph Hopper kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Graph Hopper kernel as proposed in [FKP+13].

parse_input(X)

Parse and check the given input for the Graph Hopper kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, normalize=False, verbose=False, kernel_type='linear')[source][source]

Initialize an Graph Hopper kernel.

Bibliography

FKP+13(1,2,3)

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scalable kernels for graphs with continuous attributes. In Advances in Neural Information Processing Systems, 216–224. 2013.