grakel.MultiscaleLaplacian

class grakel.MultiscaleLaplacian(n_jobs=None, normalize=False, verbose=False, random_state=None, L=3, P=10, gamma=0.01, heta=0.01, n_samples=50)[source][source]

Laplacian Graph Kernel as proposed in [KP16].

Parameters
random_stateRandomState or int, default=None

A random number generator instance or an int to initialize a RandomState as a seed.

Lint, default=3

The number of neighborhoods.

gammaReal, default=0.01

A smoothing parameter of float value.

hetafloat, default=0.01

A smoothing parameter of float value.

Pint, default=10

Restrict the maximum number of eigenvalues, taken on eigenvalue decomposition.

n_samplesint, default=50

The number of vertex samples.

Attributes
random_state_RandomState

A RandomState object handling all randomness of the class.

_data_leveldict

A dictionary containing the feature basis information needed for each level calculation on transform.

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

FLG calculation for the fast multiscale laplacian.

parse_input(X)

Fast ML Graph Kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

Initialise a multiscale_laplacian kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal of the fit/transformed data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

FLG calculation for the fast multiscale laplacian.

parse_input(X)

Fast ML Graph Kernel.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, normalize=False, verbose=False, random_state=None, L=3, P=10, gamma=0.01, heta=0.01, n_samples=50)[source][source]

Initialise a multiscale_laplacian kernel.

Bibliography

KP16

Risi Kondor and Horace Pan. The Multiscale Laplacian Graph Kernel. In Advances in Neural Information Processing Systems, 2990–2998. 2016.