grakel.NeighborhoodSubgraphPairwiseDistance

class grakel.NeighborhoodSubgraphPairwiseDistance(n_jobs=None, normalize=False, verbose=False, r=3, d=4)[source][source]

The Neighborhood subgraph pairwise distance kernel.

See [CDG10].

Parameters
rint, default=3

The maximum considered radius between vertices.

dint, default=4

Neighborhood depth.

Attributes
_ngxint

The number of graphs upon fit.

_ngyint

The number of graphs upon transform.

_fit_keysdict

A dictionary with keys from 0 to _d+1, constructed upon fit holding an enumeration of all the found (in the fit dataset) tuples of two hashes and a radius in this certain level.

_X_level_norm_factordict

A dictionary with keys from 0 to _d+1, that holds the self calculated kernel [krg(X_i, X_i) for i=1:ngraphs_X] for all levels.

Methods

diagonal()

Calculate the kernel matrix diagonal of the fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse and create features for the NSPD kernel.

set_params(**params)

Call the parent method.

transform(X[, y])

Calculate the kernel matrix, between given and fitted dataset.

Initialize an NSPD kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal of the fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X)

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse and create features for the NSPD kernel.

set_params(**params)

Call the parent method.

transform(X[, y])

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, normalize=False, verbose=False, r=3, d=4)[source][source]

Initialize an NSPD kernel.

Bibliography

CDG10

Fabrizio Costa and Kurt De Grave. Fast Neighborhood Subgraph Pairwise Distance Kernel. In Proceedings of the 26th International Conference on Machine Learning, 255–262. 2010.