grakel.CoreFramework

class grakel.CoreFramework(n_jobs=None, verbose=False, normalize=False, min_core=- 1, base_graph_kernel=None)[source][source]

The core kernel framework, as proposed in [NMLV18].

Parameters
base_graph_kernelgrakel.kernels.kernel or tuple, default=None

If tuple it must consist of a valid kernel object and a dictionary of parameters. General parameters concerning normalization, concurrency, .. will be ignored, and the ones of given on __init__ will be passed in case it is needed. Default base_graph_kernel is VertexHistogram.

min_coreint, default=-1

Core numbers bigger than min_core will only be considered.

Attributes
base_graph_kernel_function

A void function that initializes a base kernel object.

Methods

diagonal()

Calculate the kernel matrix diagonal for fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X[, y])

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse input and create features, while initializing and/or calculating sub-kernels.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

Initialise a hadamard_code kernel.

Attributes
X

Methods

diagonal()

Calculate the kernel matrix diagonal for fitted data.

fit(X[, y])

Fit a dataset, for a transformer.

fit_transform(X[, y])

Fit and transform, on the same dataset.

get_params([deep])

Get parameters for this estimator.

initialize()

Initialize all transformer arguments, needing initialization.

pairwise_operation(x, y)

Calculate a pairwise kernel between two elements.

parse_input(X)

Parse input and create features, while initializing and/or calculating sub-kernels.

set_params(**params)

Call the parent method.

transform(X)

Calculate the kernel matrix, between given and fitted dataset.

__init__(n_jobs=None, verbose=False, normalize=False, min_core=- 1, base_graph_kernel=None)[source][source]

Initialise a hadamard_code kernel.

Bibliography

NMLV18

Giannis Nikolentzos, Polykarpos Meladianos, Stratis Limnios, and Michalis Vazirgiannis. A Degeneracy Framework for Graph Similarity. In 27th International Joint Conference on Artificial Intelligence. 2018.