grakel.Kernel¶
- class grakel.Kernel(n_jobs=None, normalize=False, verbose=False)[source][source]¶
- A general class for graph kernels. - At default a kernel is considered as pairwise. Doing so the coder that adds a new kernel, possibly only needs to overwrite the attributes: parse_input and pairwise_operation on the new kernel object. - Parameters
- n_jobsint or None, optional
- Defines the number of jobs of a joblib.Parallel objects needed for parallelization or None for direct execution. 
- normalizebool, optional
- Normalize the output of the graph kernel. 
- verbosebool, optional
- Define if messages will be printed on stdout. 
 
- Attributes
- Xlist
- Stores the input that occurs from parse input, on fit input data. Default format of the list objects is grakel.graph.graph. 
- _graph_formatstr
- Stores in which type the graphs will need to be stored. 
- _verbosebool
- Defines if two print arguments on stdout. 
- _normalizebool
- Defines if normalization will be applied on the kernel matrix. 
- _valid_parametersset
- Holds the default valid parameters names for initialization. 
- _method_callingint
- An inside enumeration defines which method calls another method.
- 1 stands for fit 
- 2 stands for fit_transform 
- 3 stands for transform 
 
 
- _parallelsklearn.external.joblib.Parallel or None
- A Parallel initialized object to imply parallelization to kernel execution. The use of this object depends on the implementation of each base kernel. 
 
 - Methods - diagonal()- Calculate the kernel matrix diagonal of the fit/transformed data. - fit(X[, y])- Fit a dataset, for a transformer. - fit_transform(X)- Fit and transform, on the same dataset. - get_params([deep])- Get parameters for this estimator. - initialize()- Initialize all transformer arguments, needing initialisation. - pairwise_operation(x, y)- Calculate a pairwise kernel between two elements. - parse_input(X)- Parse the given input and raise errors if it is invalid. - set_params(**params)- Call the parent method. - transform(X)- Calculate the kernel matrix, between given and fitted dataset. - __init__ for kernel object. - Attributes
- X
 
 - Methods - diagonal()- Calculate the kernel matrix diagonal of the fit/transformed data. - fit(X[, y])- Fit a dataset, for a transformer. - fit_transform(X)- Fit and transform, on the same dataset. - get_params([deep])- Get parameters for this estimator. - initialize()- Initialize all transformer arguments, needing initialisation. - pairwise_operation(x, y)- Calculate a pairwise kernel between two elements. - parse_input(X)- Parse the given input and raise errors if it is invalid. - set_params(**params)- Call the parent method. - transform(X)- Calculate the kernel matrix, between given and fitted dataset. 
